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Chapter 1

INTRODUCTION

1.1 Statement of the Problem

In this investigation the acoustic nearfield of a cylindrical

shell of infinite axial extent will be examined. Fluid loading is con-

sidered external to the shell while the shell interior remains unloaded

except for the application of a time harmonic point force acting in the

radial direction. The behavior of the acoustic nearfield is of partic-

ular importance in the characterization of the self-noise of a sonar

array attached to such a structure. The acoustical and structural

behavior of this simple geometry can provide insight into the mechanisms

by which energy is transported and the parameters that control these

mechanisms. By use of Green's function techniques these results could

be extended to include any type of distributed mechanical loading or

non-harmonic excitation.

1.2 Historical Background

Gaseous loading usually has a negligible effect upon the dynamic

response of a structure. Notable exceptions occur when the ambient

medium is confined by rigid boundaries or when a nearly lossless struc-

ture is excited at one of its resonances. In contrast, the surface

force exerted by a dense medium such as water is often comparable to the

inertial and damping forces found in a metal structure undergoing

dynamic motion. Fluid loading alters the structural response, thus

creating a feedback loop that couples the elastic and acoustic media.

_A A ?_ii
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An early description of the behavior of acoustic radiation loading was

given by Stokes (1868) where he discussed the transition from low to

high frequency. As discussed by Crighton and Innes (1984), fluid load-

ing is a non-local mechanism. Any attempt to locally deform a structure

can lead to a slowly decaying pressure field that acts to excite the

structure further away. The interaction between the ambient fluid and

the structure has been a topic of considerable interest within the field

of underwater acoustics from the time of Rayleigh.

During the past two decades considerable progress has been made

in understanding how the ambient medium and the structure interact

dynamically. This has been due to both the heightened interest in the

subject among the Naval community and to the availability of high speed

digital computers and efficient fast Fourier transform (FFT) algorithms.

Researchers have commonly used four different methods to solve problems

in which the fluid and structure are coupled. These are often called

integral methods, the finite element method (FEM), the addition of a

fluid virtual mass, and normal mode methods. Junger (1975) has present-

ed an excellent historical review of techniques for solving radiation

and scattering problems of submerged elastic structures. The particular

approach chosen is often due to the geometry of the problem, the fre-

quency regime of interest, the length scale of the structure, the type

of results desired, computational considerations, or the personal pref-

erence of the investigator.

Integral methods formulate the desired results in terms of an

integral equation. The complexity associated with solving the differen-

tial equation of motion of the system and its boundary conditions is

replaced by the difficulty in performing a complicated integration. The

integral contains information about the equation of motion, the boundary
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conditions, and other dynamic specifications such as the behavior of the

solution at large distances. For this reason, it is possible to derive

general properties of the solution without an exact knowledge of its C

form. Usually asymptotic techniques are used to provide a solution in

the farfield or high frequency limit. Numerical integration is often

employed at intermediate ranges or frequencies. Integral transform

techniques are a classical example of an integral method. Another exam-

ple would be the use of the Helmholtz integral approach.

The finite element method (FEM) is a wholly numerical method that

requires a digital computer. The FEM regards a system as a finite

assemblage of discrete elastic elements where each element represents a

continuous structure. Elements connect to their neighbors at discrete

points, called nodes, at which the displacement and internal forces are --

required to be in balance. In this manner, complex systems with irregu-

lar geometries can be modeled as the sum of a large number of simple

systems. The resultant governing equation of motion of the system and

its boundary conditions are represented by matrix equations. The prob-

lem is characterized by a sequence of matrix manipulations. The power

of the FEM lies with the complexity of the systems that can be analyzed.

Unlike other methods, no requirement exists that boundaries represent

constant coordinate surfaces. Perhaps the greatest disadvantage of the

FEM is the long computer time required and the labor necessary in pre-

paring the input data that characterizes the system. For acoustical

problems, the FEM has been handicapped by difficulties in properly ter-

minating the fluid model to represent energy propagating into the far-.'

field. Recent advances have partially overcome this problem. Due to

numerical considerations, the FEM remains essentially a low frequency

method.
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The virtual, effective, or equivalent mass method is an approxi-

mate method that attempts to characterize the fluid radiation loading
b

upon a structure as an added mass (or impedance) term in the equation of

motion. The concept of a virtual mass is used to quantify the fluid

loading and therefore dynamically decouple the fluid and structure.

Other methods would then be used to solve the problem. This is a lumped

parameter approach that is generally accurate only for limiting values

of some parameter like frequency. The difficulty is in accurately

approximating the fluid impedance. Although the virtual mass is a prop-

erty of the medium, it also depends upon the shape and volume of the

vibrating structure. Perhaps the earliest example of the use of this

method is Rayleigh's (1945) formulation in 1878 of the equation of

motion of a piston in a rigid baffle that is radiating into an acoustic

fluid. The piston is mounted on a spring. Rayleigh constructed an

equivalent single degree of freedom system vibrating in vacuo that con-

tained a larger mass and damping to account for the fluid.

An approximation that has recently gained some popularity is the

doubly asymptotic approximation (DAA), as discussed by Geers (1978) and

Geers and Felippa (1983). The DAA is asymptotically exact for both the

low frequency, incompressible, inertial impedance and the high frequen-

cy, resistive, plane wave impedance. It effects a smooth transition in

the intermediate frequency range. The DAA may also be expressed as a

matrix of ordinary differential equations for application in discrete

element analysis of complex structures. The method is also known as the

matched asymptotic expansion, as described by Pierucci (1979). Accord-

ing to Junger (1984), the DAA does not correctly account for impedance

curves that diverge or display a peak around the coincidence frequency.

%
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The normal mode (or eigenfunction) method expresses the parameter

of interest, such as the dynamic motion of the structure, in terms of a

series expansion of the eigenfunctions of the system. The eigenfunc-

tions represent solutions of the differential equations of motion for

which the boundary conditions are satisfied. Slow convergence behavior

of these series solutions often limit the practical application of the

normal mode method. This method is suited for uniform or spatially

periodic excitation that corresponds to discrete wavenumber spectra. A

point force applied to a sphere or a line force exciting a cylinder are S

examples. Problems such as infinite plates or cylinders excited by a

point force result in continuous wavenumber spectra and are therefore

more compatible with integral transform methods.

This investigation employs integral transform methods to reduce

the governing differential equations of motion to a set of algebraic

equations in wavenumber space. Eigenfunction analysis is used to 0

express the acoustic pressure in cylindrical coordinates in terms of a

Fourier series of modal pressures over the discrete circumferential

wavenumber spectra. For the acoustic nearfield, this spectra is shown L

to be finite. Each modal pressure is represented by an inverse Fourier

integral over all of the real axial wavenumbers. The integrand is

expressible in terms of both a spectral modal specific acoustic imped-

ance that relates the radial surface velocity to the acoustic pressure

and in terms of a spectral modal mechanical impedance of the shell

vibrating in vacuo. Cauchy's theorem and integral formula are used to

solve the integrals. The acoustic nearfield is represented as a residue

contribution to the integral.

A recent report by Vogel and Feit (1980) also looks at the prob-

lem of a point-excited cylindrical shell immersed in a fluid. Although
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the formulation was similar, they chose to solve the integrals numeri-

cally. However, Vogel and Feit are primarily interested in describing

the vibrational response of the cylinder and do not calculate the acous-

tic nearfield. Much of their analysis deals with the driving point

admittance (or velocity). A limited amount of velocity data around the

cylinder circumference or along the cylinder axis is shown. Comparisons

are made with a point-excited plate both with and without fluid loading.

Vogel and Feit show that the greatest difference between the velocity

response of a point-excited plate and cylinder occurs at low frequency

and in the vicinity of the cylinder's ring frequency.

Liu and Tucker (1984a) have also investigated this problem. The

formulation was again similar, and like Vogel and Feit, they also solve

the integrals by numerical integration. Since Liu and Tucker were pri-

marily interested in characterizing the power flow, they were only in-

terested in the gross details of the fluid and structure dynamics. They

decomposed the input power into a power radiated into the farfield and a

"lost" power. This lost power was represented by energy propagating

both down the elastic shell and in the acoustic nearfield. No detailed

investigation of the acoustic nearfield was performed. The effect of

structural damping upon the power flow into the acoustic farfield was

investigated. They concluded that below the classical plate coincidence

frequency radiated power is insensitive to an increase in structural

damping. Above this frequency, the addition of structural damping only

moderately reduces the radiated power. Comparisons were also made be-

tween the point-driven cylinder and both the line-driven plate and ring-

driven cylinder. In a subsequent report, Liu and Tucker (1984b) inves-

tigated the effect the addition of a massless, compliant layer would

have upon the radiated power. Two resonance frequencies are induced by

* V ~ ~ ~ .*- ~ ~ .~** ~ .j, .~ .~ - .V - V '
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the addition of the layer. One defines an amplification region of radi-

ation reduction (negative reduction) and the other defines a region with

a low structural vibration level. In this second region the structural

damping is enhanced by coating dissipation.

Asymptotic techniques are often used to solve the inverse trans-

form integral. The farfield of the point-excited cylindrical shell has

been studied by both Bleich (1954) and Junger and Feit (1972) using the

method of steepest descents. A physical interpretation of this tech-

nique is that the pressure at a given point in the farfield is predomi-

nately associated with the structural wavenumber that matches the trace

of the acoustic wavenumber on the radiating surface. High frequency

asymptotic analysis of cylindrical shells has been primarily concerned

with acoustic scattering using the Sommerfeld-Watson formulation. This

method transforms the slowly converging Fourier series into an integral

expression that is in turn expressible as a residue sunmation that

rapidly converges. Reference is made to Horton et al. (1962), Doolittle

and Uberall (1968), Junger and Feit (1972), Ugincius and Uberall (1968),

and Uberall et al. (1977) as examples of this creeping wave solution.

Since the infinite cylinder can be approximated by an infinite plate at

high frequency, Feit's (1966, 1970) work would also be of interest.

Several simplifying approximations have Leen used by researchers

in order to avoid solving the inverse transform integrals. One such

assumption is to consider the exciting force to be independent of the

coordinate that defines the axial direction of the cylinder. Effective-

ly the degrees of freedom of the problem are reduced by one. This leads

to a plane or two-dimensional problem commonly referred to as the line-

excited problem. Examples are Junger (1952a, 1952b) and Junger and Feit
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(1972). The acoustic field solution is expressed as an infinite summa-

tion over the circumferential modes.

Another assumption is that the excitation force is periodic with

a specified axial wavelength. The solution is therefore applicable only

for the wavelength chosen while, in reality, all wavelengths are permis-

sible for a point-excited, infinite cylinder. Bleich and Baron (1954)

and Barcn and Bleich (1954) use this technique in their classic discus-

sion and prediction of the natural frequencies and modes of an infinite

cylindrical shell immersed in a fluid. They use the in vacuo modes as

generalized coordinates in the formulation of the fluid-loaded velocity

response of the shell. Kalojikhina ('!)8) also assumed periodic excita-

Ifon, Lit restricted the anaiysis to t±.e axisymmetric mode in his inves-

tigation rf he fartield acoustic radiation.

If the infinitely long cylindrical shell contains rigid, periodic

rib stiffeners, the inverse transform integral is reduced to a summa-

tion. This technique was used by Junger (1953, 1954) for both the radi-

ation and scattering problem. However, if the ribs have a finite im -

ance, the regions between ribs can couple mechanically and the inverse

transform integral formulation must be retained. Burroughs (1984)

investigated the case of a doubly periodic set of elastic ring supports.

The integrals were solved for the farfield by the method of steepest

descents.

The true finite cylindrical shell problem can only be handled by

surface integral techniques. Examples of the method are Cohen and

Schwiekert (1963), Chertock (1964), Schenck (1968), and Copley (1968).

Sandman (1976) investigated the fluid radiation loading due to a gener-

alized velocity distribution on a finite cylinder with rigid end caps.

Sandman's work represents a solution of the Helmholtz integral equation

* * ~ . *~. * ~ ' 7 .7 '~* ~ -~ ~ ~ ~ ..7 ~ ~.7 ~-
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by use of a Green's function. In this formulation, the discrete fluid

loading matrix is often referred to as the influence coefficients.

By extending the finite shell with semi-infinite, rigid, cylin-

drical baffles, the problem becomes analytically tractable using eig-n-

function techniques. Stephanishen (1978, 1982) used a combined Green's

function and Fourier integral method to investigate the radiation load-

ing and radiated power from a finite cylinder with a non-uniform veloci-

ty distribution. In the first of these papers, the general formulation

is for the infinitely long elastic cylinder, however the cases evaluated

all have a nonzero velocity distribution of finite length. In the sec-

ond of these papers, Stephanishen expands the velocity field in terms of

the in vacuo modes of the finite elastic shell. A similar technique was

also used by Harari and Sandman (1976) in a study of the vibratory

response of a three-layered cylindrical shell. Smith (1959) used lumped

parameter assumptions to solve the finite cylinder with rigid ribs prob-

lem in terms of matrix equations in a manner that is somewhat analogous

to the later development of the finite element method.

The introduction of FFT methods has been a powerful tool in the

solution of radiation problems. The FFT algorithm has a tremendous com-

putational advantage over other numerical integration schemes because of

its speed. Recent papers by Stephanishen and Benjamin (1982) and by

Williams and Maynard (1982) are an excellent discussion of the method

using planar surfaces as examples. A subsequent paper by Stephanishen

and Chen (1984) treats the infinite cylinder problem by FFT methods. The

numerical examples presented are for a finite cylinder in an infinite

baffle. The excitation is periodic in the axial direction. This work N

is particularly interesting because acoustic nearfield results are

I
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presented. Below the coincidence frequency, edge effects due to the

finite length of the cylindrical shell are shown to predominate.

Many of the methods for solving fluid-loaded cylinder problems

and much of the insight into the dynamic interaction between the fluid

and structure have come from investigations of the fluid-loaded plate

problem. The structure has been idealized as a membrane, thin plate, or

thick elastic plate. The velocity response and acoustic fields gener-

ated by point or line forces or moments have been studied. Like the

cylindrical shell results, the plate results are usually confined to the

farfield or to the drive-point behavior because they are quantities of

physical interest and there are efficient analytical techniques to

handle them. Although a complete historical description of these inves-

tigations would be too lengthy for our purpose, it would be appropriate

to briefly mention some of the more pertinent contributions.

One of the earliest investigations of the power radiated from a

point-excited elastic plate was given by Skudrzyk (1958). The farfield

radiated pressure was investigated by Gutin (1965), Skudrzyk (1968), and

-it (1970). An analysis of the radiated power due to a concentrated

momer.: was given by Thompson and Rattaya (1964). Maidanik and Kerwin

(1966) and Maidanik (1966) investigated the influence of fluid loading

upon the radiation from an elastic plate. All of these investigations

used classical thin plate theory. However, it is known that classical

plate theory fails at high frequency where it predicts infinite flexural

phase and group velocities. For this reason many investigators have
I

used the more complicated Timoshenko-Mindlin plate theory because it IO

includes the effects of shear deformation and rotary inertia that are

important at high frequency. Timoshenko-Mindlin plate theory correctly

predicts that the flexural phase and group velocities approach the

.9
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Rayleigh limit at high frequency. A similar dichotomy exists with shell

theory between so-called thin and thick shell theory. However, since I

the cylindrical shell can be approximated by a plate above the plate

coincidence frequency, the choice of thin or thick shell theory is not

as important below the plate coincidence frequency unless the shell

thickness-to-radius ratio is greater than one-tenth. Both Feit (1966)

and Stuart (1972) investigated the radiated pressure field from a point-

excited plate using Timoshenko-Mindlin plate theory.
S

Crighton (1977) has studied the driving point admittance of a

point-excited elastic plate and concluded that at low frequency the

admittance acts as a stiffness. This is in contrast to the line-excited

plate where Crighton (1972) has shown that the admittance is mass-like

at low frequency. Both Smith (1978) and Junger (1978) have offered

physical explanations for this difference. Other recent work has been

concerned with the modes and resonances of the fluid-loaded plate. An S

excellent example of the role scaling parameters and asymptotic analysis

has played in these investigations is given in two papers by Crighton

and Innes (1983, 1984) and one by Maidanik (1966). A discussion of the

physical significance of the leaky waves has included investigations by

Stuart (1976a, 1976b), Strawderman et al. (1979), and Crighton (1979).

Pierucci and Graham (1979) and Pierucci (1981) have studied the free

bending waves in thick plates.

1.3 Organization of the Investigation s1

A discussion of shell theory and the development of the Flugge

equations is presented in Chapter 2. The differences and limitations

between exact and approximate theories as well as between thin and thick

shell theory are discussed. The relationship to plate theory is pre-

sented. Important concepts such as dispersion, phase velocity, and

S
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group velocity are introduced. The geometry and coordinate system for

the problem is defined and a normalization with respect to the shell's

middle-surface radius of all length and wavenumber parameters is intro-

duced. The Flugge equations are developed for a general applied radial

force and acoustic loading. Details of the development using variation-

al principles are presented in the Appendix. The governing set of three

partial differential equations are reduced to a set of algebraic equa-

tions by expanding the shell deformations in a Fourier series over the

circumferential coordinate and by applying an integral transform of the

axial coordinate. The chapter ends by expressing the shell displace-

ments in terms of a series of modal displacements, each represented by

an inverse Fourier integral.

Chapter 3 discusses the shell vibrating in the absence of fluid

loading. The canonical form of the shell equations are used to develop

eigenfunction solutions known as branches that represent frequency spec-

tra. An asymptotic analysis at large wavenumber is performed in order

to specify a branch nomenclature. The concept of a cutoff frequency is

introduced and the behavior of the branches in its vicinity is investi-

gated on a modal basis. Frequency spectra, dispersion curves, and group

velocity predictions are presented. The effect of varying the shell's

thickness is discussed. A comparison is made between the Flugge shell

theory and a theory developed by Gazis (1959) based on the exact three-

dimensional equations of motion. The comparison indicates that Flugge

theory is adequate at frequencies below the classical plate coincidence

frequency. Forced motion of the shell is considered and developed in a

form convenient for later work when fluid loading is included. A modal

mechanical impedance in the transform domain is introduced that repre-

sents the total contribution of the shell to the fluid-loaded problem.
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The vibration of a shell in the presence of an external fluid is

discussed in Chapter 4. Boundary conditions at the shell-fluid inter-

face and at infinity are used to specify a spectral modal specific

acoustic impedance that modifies the in vacuo integral representations

of the radial displacement and acoustic pressure. These boundary condi-

tions introduce a radial wavenumber that is a multi-valued function of

the axial wavenumber. Both physical and mathematical reasons are intro-

duced to favor the use of the Sonmrerfeld branch lines to force a single-

valued behavior of the radial wavenumber in the domain of interest. The

behavior of the normalized spectral modal acoustic radiation impedance

is presented over the entire radial wavenumber domain. Existence prop-

erties of the singularities are developed and the location and behavior

of both the real and complex singularities are investigated. Comparison

is made with the in vacuo modes of free vibration. For each circumfer-

ential mode order number, fluid loading is found to require both a lower

and an upper cutoff frequency which define a frequency bandwidth of free

mode propagation. As circumferential mode order increases, the associ-

ated bandwidth decreases such that above a critical mode order no free

propagation is possible.

Chapter 5 discusses the solution by Cauchy's theorem and integral

formula of both the shell's radial displacement and the acoustic radia-

tion field for a point-excited cylindrical shell irmmersed in a fluid

medium. Numerical examples are presented in the acoustic nearfield

defined as a<r<2a and O<x<lOa. The radial displacement of the shell and

the acoustic pressure loading on the shell are presented. A summary of

the problem and conclusions drawn from the study are presented in

Chapter 6.

",.1
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Chapter 2

SHELL THEORY

2.1 Introduction

Shell theory is a diverse field which has been the continuing

subject of many textbooks and hundreds of papers. This thesis has an 0

interest in shell theory primarily as a displacement boundary surface

for an acoustic field. In order to place the shell theory chosen for

this study in perspective, the initial discussion will deal with the

general types and characteristics of shell theories. Specific reference

is made to Timoshenko (1940), Flugge (1973), Leissa (1969 and 1973), and

Graff (1975) for background material, and to Graff, Greenspon (1960),

Frymoyer (1967), and Walter (1979) for historical discussion. The gen-

eral discussion will be followed by a development of the Flugge shell

equations and their solution using integral transform techniques.

2.2 Exact and Approximate Theories

The so-called "exact" shell theories are based upon a three-

dimensional analysis for an elastic continuum in which mass, momentum,

moment of momentum, and energy are conserved. The usual approximations

are based upon assumptions that the strains are small, a linear rela-

tionship exists between stress and strain, and terms associated with

higher-order ratios of shell thickness to mean radius can be ignored.

Often a homogeneous, isotropic material is assumed. Both the linearized

elastic theory and the boundary conditions which result from such an

analysis are complex and difficult to use. Reference is made to the
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work of Gazis (1959) as an example of an exact shell theory. In addi-

tion to the elastic assumptions discussed above, an exact theory can

also account for material anisotropy, piezoelectric effects, thermal

effects, viscoelastic effects, plasticity effects, nonlinear effects,

and fluids. As might be expected, for all but the fluid case, the

resulting equations would be much more complicated than those for the

linear elastic, homogeneous, isotropic material situation.

Approximate shell theories are usually based upon a strength-of-

materials approach where assumptions have been made about the material

deformations that approximate the detailed behavior of a solid. Approx-

imate shell theories are usually characterized as membrane, bending, and

higher-order theories. Additionally, both membrane and bending theories

are generally referred to as thin shell theories, while the higher-order

theories are known as thick shell theories. Thin shell theories use the

three displacement components of the shell's middle surface as degrees

of freedom. Consequently, thin shell theories have a third-order stiff-

ness matrix and a characteristic equation which yields three roots.

Thick shell theories usually allow for two additional degrees of freedom

by including two rotations of the normal to the shell's middle surface.

Consequently, a more complex fifth-order stiffness matrix results, and

the characteristic equation yields five roots. This is contrasted with

the exact theory which has an infinite number of roots. The increased

complexity of both exact theory and thick shell theory is such that,

when applicable, the thin shell approximation is both analytically and

computationally advantageous. The zero-order Flugge shell equations

used in this wo:k are an example of a bending theory and represent the

thin shell form of the Mirsky-Herrmann (1956-59) higher-order theory

which contains both rotary inertia and shear deformation effects.

E. L~-r aw k Lj% - . .- - .q •,. . .- .. S-. ,. - -,. - . . . .. .
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Classical flat membrane theory is the two-dimensional analog of

the string. Restoring forces arise from in-plane tensile forces, and

there is no resistance to shear and bending forces. In membrane shell

theory, only normal and shear forces acting in the mid-surface of the

shell are considered. Transverse shear forces and bending moments are

considered to be negligibly small. The shell is thus assumed to behave

as a curved membrane. Membrane theory is often adequate for relatively

uniformly distributed, applied radial loading. In regions in which

larger loading gradients exist, such as in the vicinity of concentrated

loads and near boundaries, or for applied loading which is not radial,

such as a twisting moment or in-plane surface tractions, membrane theory

will not be sufficient, and a bending or higher-order theory would be

required.

Classical plate theory represents a two-dimensional analog of a

beam in which bending moments and transverse shear forces are active.

Bending shell theory accounts for moments and transverse shear forces in

addition to the membrane forces. The shell is thus assumed to behave as

a curved, thin plate. From experience with beam theories based upon the

exact equations of elasticity, it is known that shear deformation is

important at higher frequencies. Since shear deformation requires a

rotation of the normal to the shell's middle surface (or a contradiction

of the hypothesis that plane sections remain plane), bending theory

assumes no shear deformation. Ignoring rotary inertia effects omits the

rotational kinetic energy contribution to the system's energy. This is

acceptable at low frequencies where the rotational velocity is small.

However, at high frequencies where the rotational velocity is appreci-

able, rotary inertia must be included. Therefore, bending theory would

not be expected to be adequate at high frequencies. Also, in regions of

~. ~ f
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high loading gradients, both rotary inertia and shear deformation become

more important, and a higher-order shell theory would be required.

Higher-order shell theories are related to bending theory in a

manner analagous to the relationship between thick plzce and thin plate

theory. Higher-order theories account for rotary inertia effects, shear

deformation effects, or both. In addition to the shell's middle-surface

displacements, higher-order theories also utilize two rotations of a

normal to the shell's middle surface. Both membrane and bending theory

are formulated by neglecting higher-order ratios of shell thickness to

mean radius, while thick shell theory includes more of these effects.

In general, the range of validity of thick shell theories is greater

than that for thin shell theories. However, the added complexity of the

equations presented by thick shell theory may not be justified, espe-

cially for problems with a ratio of shell thickness to radius less than

1/20. When frequencies get so high that the displacement distributions

are no longer linear across the shell thickness, then all approximate

shell theories lose their meaning and only exact theories that allow

nonlinear behavior would be adequate.

2.3 Dispersion

The displacement distribution predicted by exact and approximate

shell theory is generally dispersive. That is, each harmonic component

propagates at a different wave speed such that a pulse would distort

with time. In this context, a differentiation must be made between the

phase velocity and the group velocity. The phase velocity refers to the

propagating velocity of a constant phase wavefront associated with a

harmonic component and is defined as
w-

C -

k ,
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where k is the wavenumber of the wave and C=C(w) is true for a disper-

sive system. The group velocity refers to a dispersive system having

many harmonic components, such as a pulse. The disturbance that arrives

at a particular point x at time t will be the result of several harmonic

contributions and will have traveled with a group velocity Cg-x/t. This

disturbance will have a dominant frequency o determined from a station-

ary phase treatment of the problem. According to Brillouin (1960), the

group velocity is represents the rate at which energy is transported. A

more common definition is given by

Cg dw C + k dC
dg- - dk

For a nondispersive medium Cg= C

Two methods of displaying dispersion characteristics are commonly

used. The first is the frequency spectrum of the system which relates

frequency to wavenumber. A straight line passing through the origin

represents a nondispersive system. The group velocity is, therefore,

the local slope at a point of the frequency spectrum, while the phase /

velocity is the slope of the chord to a point. The second method is a S

dispersion curve which relates phase velocity to wavenumber. A constant

phase velocity line indicates a nondispersive system. Often, normalized

parameters are used, as well as logarithmic scales. By inspection of a

dispersion curve, it is possible to determine frequency, wavelength,

phase velocity, and group velocity. if the frequency is taken as the .

independent variable, as is physically more appropriate, then both the P

frequency spectrum and the dispersion curve will yield wavenumbers in a

complex wavenumber space. Reference is made to Frymoyer for examples of

frequency spectra in the complex wavenumber domain for a cylindrical

sheLl in-vacuo developed using the Flugge equations. When studying 'p

N
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coincidence phenomena, the phase velocity along the boundary of two

media must match to allow constructive interference as the waves propa-

gate. It is not necessary that the group velocities be the same.

Dispersive systems are often associated with a phenomenon known

as "mode cutoff." Systems which have a finite phase velocity at infi-

nite frequency, such as dispersive acoustic and elastic systems, have a

frequency spectrum that can yield complex or imaginary wavenumbers below

a certain frequency, known as the "cutoff" frequency. Below the cutoff

frequency, the imaginary component of the wavenumber acts as an attenu-

ation such that the mode cannot be said to propagate as a wave. At

driving frequencies above the cutoff frequency, the mode will propagate.

The cutoff frequency can be found by evaluating the characteristic equa-

tion in the limit as the wavenumber tends to zero. This implies an

infinite wavelength which represents a zero frequency in a nondispersive

system, but which can yield a nonzero frequency for a dispersive system.

2.4 Shell Displacements and Wave Types

The eigenvalues of any shell theory that are related by continui-

ty of frequency considerations are known as branches. Generally, there

is one branch for each degree of freedom of the system. In contrast to

plate theory, continuity requirements in the shell's circumferential

coordinate give rise to an infinite number of circumferential mode order

numbers. For each of these integer mode order numbers, a unique charac-

teristic equation exists that defines ths. 3igenvalues. For fixed cir-

cumferential mode order number, the branches represent frequency spectra

of free wave propagation in the shell where the associated eigenfunction

represents the relatioship between the degrees of freedom that comprise

that propagation.

,.?~~~~N N .- Z - ," .: .
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Approximate shell theories are usually based upon a displacement

field which is linear in the thickness coordinate. For a bending shell

theory, the longitudinal (axial), tangential (circumferential), and

transverse (radial) displacements of the shell middle surface represent

the system's degrees of freedom. For all circumferential mode orders

except the axisyimnetric mode, all of the modal displacements within each

branch are coupled. Often, the branch is named after the displacement

component which contributes the most energy to the vibratory mode over

some range of interest. For example, many authors speak of a longitudi-

nal branch. Since the contribution to the total energy is a function of

a normalized wavenumber, the branch nomenclature may not be appropriate

over an entire frequency range of interest.

Exact theory is based upon a displacement field that is nonlinear

in the thickness coordinate. In addition to the infinite number of

allowable modes, wave types exist within the structure that do not exist

in thin shell theory, which yields only coupled displacement modes.

Graff (1975) sunmarizes two of these for the case of an infinite elastic ,

solid. One of these is a dilatational wave which is irrotational and

associated with a change in volume. Graff calls this the P wave, or

primary wave, and it can be thought of as longitudinal wave associated

with elongation of material fibers and it propagates with a phase

velocity given by

C2 E (i-p )
C1 p(l+g)(l-2-)

for the axisymetric mode. Here E is the material's elastic modulus, p

its mass density, and a its Poisson's ratio. The coupled lonaitudinal-

flexural wave velocity for the axisymmetric mode of a cylindrical mem- N

brane shell is given by

"v.
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b W0 - E/p C1 P

in the low frequency limit and is the same as the longitudinal bar

velocity. In the high frequency limit, this becomes

2 E < C 2
p(-/j2 )

which is also the low frequency phase velocity, Cp, for compressional

waves in a thin plate. For u = 0.28,

Cb(o0) = 0.88 C1

and

Cb(w-x) = 0.92 C1

The second type of wave is a distortional wave that is equivolu-

minal and associated with distortion of the angle between two fibers but

without elongation of the fibers. Graff calls this the S wave, or shear

wave, which can be thought of as a torsional wave. The S wave has a

phase velocity given by

2  E
s 2 p(l+p)

in the axisymmetric mode. The shear wave speed C5 for an infinite

elastic solid is equal to the torsional wave speed of both a membrane

cylindrical shell and a solid circular rod.

The addition of a boundary to the system, such as a semi-infinite

elastic medium and a vacuum half-space, introduces a reflective surface.

Under such a condition, a phenomenon known as mode conversion may exist

upon reflection such that pure P or S waves reflect both P and S waves.
5

For a doubly bounded structure such as a shell, the characterization can

%W
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become quite complicated. The addition of a boundary also gives rise to

a third wave type known as a surface wave. It contains only transverse

displacements and is confined close to the surface. For a vacuum half-

space this wave is known as a Rayleigh surface wave, and it has a phase

velocity given by Viktorov (1967) as

CR = Cs (0.87 + 1.
12p)/(l+p) < Cs

- 0.92 Cs for -0.28

The Rayleigh (1887) wave speed serves as the high frequency limit for

flexural waves in the exact theory of wave propagation in an infinite,

cylindrical shell in air, since for very high frequency the shell curva-

ture approximates a flat plate and the shell thickness approximates a 4
semi-infinite medium. Both Pochhammer (1876) and Chree (1886) investi-

gated the propagation of waves in a solid cylinder. These solutions,

the Pochhammer modes, form the thick shell limit of modes which exist in

cylindrical shells.

For two semi-infinite elastic media with a common boundary, each

incident P or S wave will produce P and S reflected and refracted waves.

In addition, Stoneley (1924) showed that a surface wave can exist at the

interface between the two media if the shear wave velocities Cs of the

two media are nearly the same. Such a generalized Rayleigh wave is S

called the Stoneley wave. If the system is comprised instead of an

elastic layer over a semi-infinite elastic media, a situation can exist

such that S waves are trapped in the layer and propagate by multiple

reflections. Such waves are known as Love waves. Love waves cannot

exist in a fluid layer since the fluid cannot support shear.

While an analysis based upon an exact elastic theory yields wave

types which are pure dilatation or shear, the addition of boundaries can

.,J4
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make the analysis very complicated. On the other hand, approximate

shell theories must deal with coupled displacement behavior. However,

their use is much less complicated than the exact theory. The errors

introduced by an approximate theory can often be reduced over some

frequency range of interest by introducing correction factors called

adjustment coefficients or shear constants to the approximate theory

which force agreement with the exact theory at specific points.

2.5 Development of the Flugge Thin Shell Equations

The Flugge shell equations represent a bending theory. They were

chosen to describe the shell deformations for several reasons. Bending

theories in general are attractive in that they represent a considerable

reduction in analytical and numerical complexity over higher-order

approximate theories and exact theories. Since the frequency regime

below the classical plate coincidence frequency is of more practical

interest than higher frequencies, many of the advantages offered by

higher-order and exact theories are not as important. Of the available

bending theories, the Flugge theory results in a symmetric stiffness

matrix. This feature has the important consequence that it represents a

system in which energy is conserved. Other bending theories which

result in nonsymetric stiffness matrices are known a priori to be non-

conservative, which brings into question the adequacy of the fundamental

assumptions upon which those theories are based. Another advantage of

the Flugge theory is that it is a zero order theory that is a derivation

from a higher-order theory. The development would allow future modifi-

cation to include shear deformation and rotary inertia effects as a

first-order theory, or a still higher-order theory, if desired. This is

a feature which the Flugge theory has in common with Mirsky-Herrmann

thick shell theory. In fact, the zero-order Flugge theory yields the
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same equations as the zero-order Mirsky-Herrmann theory, although their

higher-order theories differ.

The coordinate system and geometry of the infinite cylindrical

shell are shown in Figure 2.1. The shell has a thickness h and a middle

surface radius R. A circular-cylindrical coordinate system (r,e,x) is

established such that radial distances are measured from the cylinder

axis. The circumferential and axial coordinates are measured from the

point of application of an applied harmonic point force directed radial-

ly outward. All axial and radial distances, as well as all wavenumbers,

are normalized by the shell's middle-surface radius R such that they are

non-dimensional. The shell's thickness h is also normalized by the

radius. An additional radial coordinate p is introduced and measured

from the middle surface of the shell with the positive sense taken as

outward such that ral+p. The coordinate system can therefore be refer- A6

enced to (p,8,x) with derivatives with respect to r replaced by deriva-

tives with respect to p. The normalized external radius of the shell is

denoted by a=l+h/2. The cylindrical shell is surrounded by a fluid

medium of characteristic acoustic impedance pc on its exterior and a

vacuum on its interior. Since the fluid medium will not be fully con-

sidered until Chapter 4, no ambiguity concerning the variable p should

occur during the development of the Flugge shell equations. N0
The deformation at any point in the shell will be referenced to

displacement components u, v, and w of the shell's middle surface which

respectively represent axial, circumferential, and radial displacements.

All displacement components are also normalized by the shell's middle-

surface radius R. The shell is assumed to be a homogeneous, isotropic,

elastic material with elastic modulus E, Poisson's ratio M, and mass

density p5. Unless otherwise noted, Table 2.1 represents the geometric
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Table 2.1 Geometric and material parameters.

Symbol Description Value

a ratio of shell outer radius to mean radius 1.005

h ratio of shell thickness to mean radius 0.01

E shell material elastic modulus 19.5xl010N/m2

Ps shell material density 7700 Kg/M3

p shell material Poisson's ratio 0.28

P fluid density 1026 Kg/m 3

c fluid acoustic velocity 1500 m/sec

and material parameter values used throughout this study. Initially, no

damping is assumed. A small amount of damping will be added later by

considering a complex modulus in order to evaluate contour integrals in

the complex plane. The shell is assumed to be freely supported at its

ends, which will be useful in the derivation of the governing equations

of motion using Hamilton's principle.

Let us begin by assuming that at any point within the shell the

displacement due to loading can be given by the components u r, u8, and

which represent radial, circumferential, and axial deformations. In

general, these components will be dependent upon p, e, x, and time. If

we expand these deformations in a Taylor series about the middle surface

(p-0) of the shell, we would yield .

m
Ur (pext) I- u(m)(e,x,t)

m=o

O m
U (Pe)xit) E P U(M) (P,x,t) (2.1) S

m=o

.

*1
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m

where U(m), u(m) and u(m) represent the mth derivative of ur, Ue, and u

with respect to p evaluated at p=O.

The first term in each series represents the displacement of the

shell's middle surface, the second term refers to rotation, and higher-

order terms quickly lose their physical definition. Flugge theory can

be characterized by the highest-order derivative term which is retained

in the expansions. First-order theory would be approximated by-

u(1) ,Ot
U (p,e,x,t) = u(x,e,t) + p ux (xet)x

- v(x,e,t) + p u(1)xe,t) (2.2)
ue(p,e,x,t) u xet

w~~~)+pu(1)( 0')

Ur(pOx,t) = w(x,e,) + p U r (x,Et)

where u, v, and w have been introduced as the normalized displacements

of the shell's middle surface. This assumption essentially requires

that all points which lie on a normal to the shell's middle surface

before deformation must also do so after deformation. Higher-order

derivatives are considered to be negligible compared to unity. If the

strain variation in the radial direction is assumed small and neglected,

then u r would not be dependent upon p and

U(i) . 0 and ur (p,e,x,t) w(x,e,t).rr

The first-order theory includes membrane, bending, shear deformation,

and rotary inertia effects.

The three-dimensional, strain-displacement relations in cylindri-

cal coordinates are given by
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aux
cxx ax~i

13 Uecee - re + r Ur

u r
£ rrp

(2.3)

IUx aUe
5ex r3 T-- + -

+ x
5xr ax ap

aue  1 Ur 1
Cre a" + r -e9r

and the strains are symmetric such that ci = ji" If the first-order

approximation of the dislacements is introduced into the relations for

err' £xr' and cr8 we find that err=O, as assumed, and

C w +u(1)exr ax x

1 (1 wCre i [u8  + - V .

Classical bending theory neglects thickness shear stresses, which for an

isotropic material is equivalent to neglecting thickness shear strains.

This is often referred to as neglecting shear deformation and is valid

for a thin shell. This assumption reduces the problem to one of plane

strain. Setting cxr= £erO results in

u(1) aw
x T-

(2.4)
(1) awU -v pe

which relates the slopes at a point in the shell to the displacement and

slopes of the shell's middle surface. Since the shell motion is now

.
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characterized entirely by the middle-surface displacements, the negligi-

ble shear deformation assumption reduces the first-order theory to a

zero-order theory.

The displacement components at any point within the shell can now

be written as

u (p,E,x,t) - u(e,x,t) - p aw(ext)
x ax

u (p,O,x,t) - r v(G,xt) - aw(e,xt) (2.5)e ae

ur (p,e,x,t) - w(e,x,t)

Introducing these expressions into the remaining strain relations for

Cxx' Cwt and cEx yields

Sau a2w
XX ax P r,

ax
. av a 2w 1(26

2
M1 -u + av P(2+p) a w  I

Cex rae9 ax r aa

The strains can be written in terms of the membrane strains e for

a cylindrical shell and some curvature effects K as

£x W e -pKxx xx xx

C% £ e., - p Kqe (_p)m (2.7)

E£x = eqx - p (KXe + K)X (_p)m]
m~o

where l/r - l/(l+p) has been expanded into a geometric progression. The

membrane strains are given as

AM- . z~~ ...... .-. -- . ..
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u
xx a

ave , + w (2.8)

au +vex +- ,

which represent middle surface extensions. The curvature changes are

given by

a2w

2ax S

a2w + W
ee

(2.9)

K au a2 w
ex =e + aeax

a2
w a w av aKx( = aax ax

where Kxx and K19 represent change of curvature in a single plane, and

K and K are coupled curvature changes, or twists. Note that

eex = Kex Kxei

is true.

If we assume small deformations, then we can apply the linearly

elastic Hooke's Law for a homogeneous, isotropic material in order to

relate the stress state to the state of strain through the elastic con-

stants E and u. If we assume that the radial stress arr is negligible

compared to the axial and circumferential stress, which is a valid

approximation for a thin shell, then the stress state is given by

am E [C + U
XX = (- ) XX ee]
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Be [E2 e + xx] (2.10)

(i-u

E
9x _21+, "ex

which are identical in form to those derived for classical plate theory.

The stresses and strains are defined in terms of the middle-surface

deformations by Equations (2.6) - (2.8). Enough information now exists

to apply a variational energy method known as Hamilton's Principle in

order to find the differential equations of motion governing the shell.

wave motion in an elastic system is characterized by the dynamic

transfer between the scalar kinetic and potential energies. These ener-

gies are invariant with respect to the choice of coordinates and repie-

sent fundamental properties of the system. From a knowledge of these

energies and the application of Hamilton's variational principle, it is

possible to derive the differential equations governing the motion of

the shell in terms of the middle-surface deformations. A description of

the method and the details of the development are given in the Appendix.

The results, Equations (A.33), are presented here for time harmonic

excitation in differential operator form as

Ll1u + L12v + L13W -_ 2 U

p

v+ W 2 R 2

L21u + L22 v +L 2 3 w -2 v (2.11)
p

2 R2  1
=31 32 33 (A w + D (fd- Pa )

c1
p 9

where cp is the low frequency phase velocity for compressional waves in

a plate, defined as

S.
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and D is the normalized extensional rigidity of the shell, defined as

(1-/ 2 p

The fluid loading on the shell is denoted as a'while fd denotes the

distributed radial forces applied to the shell. The differential

operators are given as

L11 E 2 + a2
ax e

L ,r+'U I .

12 30aax

3 3

axae ax

L21  12N

- 1-~ 2  a2
L 22  [ [l3] 2 + 2 (2.12)

ax ae

L a [3-,u a3
23 Te -r aEax

L32 -I239

a 4 2
L 1 + is[ a ~ 4 + a2 a4 2 -a 2+ 11

ax ae ax 8E) ae

where

0 /12

VIU
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is the normalized thickness-to-radius ratio. For a thin shell, with a

normalized thickness h<0.10, then B<8.3xlO . Terms proportional to 0

are due to bending, while the remaining terms are membrane terms.

These equations are the same as those developed by Flugge using a
strength-of-materials approach based upon stress resultants and balance

of forces. The symmetric, differential-operator matrix [L] represents a

self-adjoint system. This system is positive definite such that any

change in state from an equilibrium condition acts to increase the total

energy of the system. The system is conservative and obeys the Maxwell- S

Betti Reciprocity Theorem [e.g. Love (1927)1. Put in cannonical form,

the system will yield positive real eigenvalues and eigenfunctions which

are orthogonal.

2.6 Wavenumber Space Representation of the Shell Equations

The Flugge equations represent a coupled set of differential

equations in the dependent displacement variables u, v, and w and the

independent coordinate variables x and e. Since the fluid surrounding

the shell will respond only to the radial deformations w(e,x), it will

be necessary to determine w in order to match boundary conditions at the

shell-fluid interface. Unfortunately, the Flugge equations in differen-

tial form are too complicated for standard solution techniques to apply.

However, by transforming the equations into wavenumber space, they will S

be reduced to a set of algebraic equations which can readily be solved

for the transformed radial deformation. Inverse transform techniques -"

can then be used to determine the deformation w, or ultimately the

acoustic pressure, in coordinate space. The difficulty in solving the a.

differential equations is replaced by the difficulties of an inverse

Fourier integral in the complex domain and convergence considerations of

an infinite Fourier series. A characterization of the shell in wave-
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number space will display the dispersive nature of the shell vibrations.

Let us begin by assuming a separable solution in the axial and

circumferential directions. Let us further assume that the shell defor-

mations can be expanded in a Fourier series over the circumferential

coordinate 9 as

u(ext) cs n exp(-jwt)u(8,~t) Un(X) sin n8)

w(9,x,t) - Vn (nx) cos nE) exp(-jwt) (.3n-o sin n8

v(e,x,t) - W (x) cos ne exp(-jcwt) (.3
nEo n sin n9

n-o n snn

where either a Fourier cosine or sine series is chosen. The parameter n

is called the mode order and represents a wavenumber in the circumferen-

tial direction. Considerations based upon continuity restrict the wave-

number n to integer values. The functions Un(x), Vn(x), and Wn (x) rep-

resent the modal dependence in the axial direction. Relations (2.13)

state that the middle-surface deformations can be expressed as the sum

of their modal contributions. Of the eight possible &-dependent combi-

nations represented by Equations (2.13), only two are compatible with

the strain and stress relationships given by Equations (2.6) and (2.10).

These are

u a cos n6 u m sin ne

v a sin nO or v a cos n(;

w a cos ne w - sin ne

and either set would ultimately yield the same results. We will arbi-

trarily choose the first set.

......... '-]
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Introducing Equatons (2.13) with the above choice of series rep-

resentation into the differential Equations (2.11), multiplying each

equation by either sin(me) or cos(me) as appropriate, and integrating

each equation over G from (O,2n) yields

MllUn(X) + M12Vn(X) + Ml3Wn(x) 9 2 Un(X)

2
M21Un(X) + M22Vn(x) + M2 3Wn(X) 9- 2 Vn(x) (2.14)

22M31Un(X +32Vn() 33Wn(x) -- S2 Wn(x) + -- J(fd-Pa) o~e O.

0
p.

where the driving frequency w has been normalized by the ring frequency

of a membrane shell, given by

2=__ R _12

Wring cp ( c

such that an Q of unity represents a driving frequency with a wave-

length equal to the circumference of the shell. The relationship be-

tween the normalized frequency 2 and the ratio of the driving frequency

to the classical plate coincidence frequency, wc, is also shown. For

nominal values of a steel shell in water with an h of .01, the plate

coincidence condition would occur at about 2 equal to 28.4. Time

dependence is implicit in Equation (2.14).

In deriving the above results the orthogonality relations

2rr
f cos(ne) cos(me) de - 2 47
0 enru

(2.15)
2n

f sin(ne) sin(me) de ; ( n- ) rim
0

'_
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were used where

I when n -0
C = Neumann factor w

2 when n > 0

f 0 when n # m
6M = Kronecker delta function - f

Ih n

The operator matrix is now defined as

M 2  1- 2

Mil E 2 ](10n2x -

ax

M In~ a12 ax 2

a a-jn a 31

M2 -p-[ ][I+3] -2 - (.6

M13 a 2 ax a 3

xa

M 3-u a 2 n
ax

M31 M 13

M32 M -23

M33 1 + a44 - 2n a2  n4 - 2n2 + 11

x [x 2

and is independent of the circumferential coordinate G. The Fourier

series expansion has transformed the governing equations from 8 coordi-

nate space into n wavenumber (or modal) space.

A Fourier integral transform will be used to relate the axial

coordinate x to the continuous normalized axial wavenumber . The
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dimensional or unnormalized axial wavenumber has been multiplied by the

shell's middle-surface radius R to yield the nondimensional &. In a

similar manner the normalized acoustic wavenumber is denoted as k. The

transform pair are defined as

I f(x) exp(-jx) dx (2.17)

f(x) =if y (E) exp(+jEx) d& (2.18)

where the form has been chosen such that a wave propagating in the

positive axial direction f(x) - A exp[j(kx - wt)] yields a positive

wavenumber spectrum ?(&) = A 6(& - k) where 6(y) is the Dirac delta

function. A superior tilda is used to denote the Fourier transform.

The Fourier inversion formula, given by Equation (2.18), is a generali-

zation of the Fourier series over an infinite interval of x. The

Fourier transform of a derivative can be shown to be

[mf i -f exp(-jx) dx = (j&)m ( ) (2.19)

subject to the condition that f(x) and all of its derivatives up to the

mth derivative approach zero as lxi approaches infinity.

By applying a Fourier transform to the governing Equations (2.14)

and with use of Equation (2.19) for derivatives, we yield

M11Un(&) + Mi2Vn(&) + MI3Wn(&) Q2 an(&)

M2Un + R + Vn(E) (2.20)

22 2-
M31Un() + 32 ) - 33 () = 2 c(4 ) + en (Z -~a ) cos(n8) dG

0
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where Pa and d are the Fourier transforms of the acoustic pressure

loading and the applied forces. The transforms of Un, Vn, and Wn(x) are

denoted by U]n, %, and Wn(M). Relations (2.20) are independent of the

x-coordinate. The operator matrix is now purely algebraic in n and

and is given by

.i~ 2 j. ]Ll+ ]n2 = l

2 __ - 2

M 1 + (-2 ~lAJ 2 m i l j

M 12 -j[ -n m12

M 2 - --M n2 j

M21 12 -jm 1 2

~ i [ [2 n2= 2"
M22 [I+30] + n (2.21)

M23 n[( 3 A)7 2 +1] - t23

M - MI3 -m13=

M32 23 inm2 3

M 133 1 + 0[& + 2n2 2 + n4 -2n +1]- i 33

Note that the system is Hermitian for real E.

In general, if the transforms of the acoustic pressure loading

and the applied forces were known, Equations (2.20) could easily be

solved for On, n, and Qn(U ). In that case, the displacements would be

given by
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+a*u(e,x,t) 1 cos(n) f j(ix-&t) d&

n-o

v(e,x,t) = 1 sin(ne) Vn(&) e j d &x-wt) (2.22)
ni=o -

E - cos(n9) () ej( X-Wt ) d
, n-o -w

The applied force fd is a harmonic point source located at x=O and ,-0.

The acoustic pressure loading will be developed in Chapter 4 and will be

dependent upon the radial displacement w such that it would appear on

the left hand side of Equation (2.20). The next chapter will deal with

the shell in a vacuum such that the acoustic pressure loading is zero.

bI



Chapter 3

THE BEHAVIOR OF A SHELL IN VACUO

3.1 introduction

This chapter will discuss the vibration of a shell in the absence

of a fluid loading. Concepts and nomenclature will be introduced which

will be useful in later work. The in vacuo behavior will also serve as

a basis for comparison when fluid loading is considered. The first

section deals with the canonical form of the shell equations where the

applied forces are taken as zero. The eigenvalue solutions at large 0

axial wavenutmber are then used as a basis for developing a branch nomen-

clature. The eigenvalue behavior near the lower cutoff frequency is

investigated. Frequency spectra, dispersion curves, and group velocity

data are presented, and the effect of varying the shell's thickness is

discussed. Physical insight into the vibration modes is introduced. A

comparison is made between the approximate Flugge theory based upon a

thin shell theory and a theory developed by Gazis from the exact three-

dimensional equations of elasticity. Finally, the problem of the forced

motion of the shell is considered and developed in a form convenient for S

later work when fluid loading is added.

3.2 The Eigenvalue Problem

In the absence of applied and fluid loading, the equations of

motion governing the middle-surface displacements of the shell assume a

canonical form given as

[M] [X] = X [X] (3.1)

,p
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where [M] and [A] are understood to be matrix quantities. The scalar X

represents the eigenvalues of the system. The column matrix [X] is the

transformed modal deformations On, i and Q . The square matrix (A] is

effectively a stiffness matrix with elements which act as stiffness

influence coefficients.

'11 Jm12  1'13
[] " -J"2 i22  m2 3  (3.2)

-j'13  1%23 n33 

The coefficients mij are defined by Equation (2.21).

Equation (3.1) could also be written as

([M] - X [I]) IX] = EM [X] = 0 (3.3)

where EI] is the identity matrix and [X] is the characteristic matrix.

For a nontrivial solution, the determinant of the characteristic matrix

must be zero, thus yielding the characteristic equation

1 3 s2 2

det([X]) - s1X + s2X + s3X + s4 - 0 , (3.4)

which is third order in X. The coefficients are given as

S2i m ml1 +11122 +1'33

-2 -2 -2

3 1112 + m1J3 + "'23 - '11"'22 - 11mn33 - m22'~33 (3)

-2- -2 -2-
4 m lm 2m33 + 2m12m13m23  12m33  m 3m22  23 11

For real &, [A] is Hermitian. An investigation of the coefficients s

of the characteristic equation shows that for real & the signs of the

coefficients alternate. From a theorem presented by Wilf (1962), such a

- .* ~ .~ . N N N N -. ~ N ~.'%~ . -
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system is positive definite, and all of the resulting eigenvalues are

real and positive. Therefore, for each real &, three positive real

eigenvalues, or natural frequencies, must exist. If frequency is taken

as a parameter, which is physically appropriate, each eigenvalue will

represent a point on a frequency spectrum. These spectra are often

referred to as the shell branches.

Each eigenvalue represents an orthogonal mode of vibration, or

eigenfunction, in which the middle-surface displacements are coupled by

the governing equations of motion. Because of the coupling between dis-

placements, pure wave types generally cannot exist in a shell. However,

the concept of a primarily longitudinal, torsional, or flexural shell

motion does provide some physical meaning to the interpretation of the

branches and to the discussion of various results. In general, the dis-

placement coupling is not constant at all axial wavenumbers, and any

nomenclature associated with a branch is usually applicable over only

some wavenumber region of interest. The nomenclature used in this study

is be based upon the behavior of the branches at large axial wavenumber

where the shell behaves much like a flat plate.

3.3 Establishment of the Branch Nomenclature at Large Axial Wavenumber

The characteristic equation will yield three eigenvalues at each

mode order n of the form

X- X(&,n,p,8) - nq( ) q-1,2,3

for fixed p and 8. The natural frequencies would therefore be

Qn( ) - Xn([) q-1,2,3 (3.6) U"nq& - Fnq(&

which is recognized as a dispersive frequency spectrum. In the axisym-

"" " ...... ~ 4
"

"' 'U',' '".''.','
'

". W U" *'.4'. . (. " ," "
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metric mode, the circumferential displacement is independent of both the

axial and radial displacements at all wavenumbers. This is one of only

two pure wave types which can exist in a shell. The characteristic

equation decomposes into the following set of two equations

('i - X0q)(rn3 3 - X'q) - m13 - 0 for q-i or
(3.7) -

12 - 0 2  0 for q-2

where mij are defined by Equation (2.21) with n-0. The initial associa-
1)

tion of values of q with particular eigenvalues for the purpose of

nomenclature is arbitrary. If the eigenvalue of the decoupled equation

is denoted by q-2, then this second branch can also be designated as the

torsional branch since it is only dependent upon the circumferential

displacement and is described by

X '2 = (iU)(1I+30) &2

which is valid at all axial wavenumbers.

The other two eigenvalues can be found from the first of

Equations (3.7) to be

X01 [0 1+ & 2 + 21- 2jS 6 + &'- 2 2 + 1]

where only the lowest order 8 term of each power of & has been retained.

At large &, the eigenvalues are approximated by

S 1 4 2 32
01,3 [04 + & 1 + ( - i)]

Let us associate the negative sign with the first branch (q-l), then

>01

1%, jo1W



44

which yields a frequency spectrum given by 201-. Introducing this
eigenvalue into the decomposed equations of motion as given by Equation
(3.3) yields the displacement ratio

limit (100101 evaluated at X01} >> 1

This indicates that the eigenfunction associated with X01 represents

primarily axial displacement at large &. Therefore, let us also call

the first branch the longitudinal branch.

In Equation (3.8) the eigenvalue associated with the positive

sign is denoted by q-3 and given by

X03 = a4 + 0.5 4

for 8>0. At this eigenvalue, it can be shown that

limit (fCw/v001 evaluated at X 03 1 " 1

which indicates that X03 has an associated eigenfunction that represents

primarily radial displacement at short axial wavelength. Therefore, let

us also refer to the third branch as the flexural branch. Note that for

a membrance shell, X03-1 is the solution of Equation (3.7).

At higher mode orders the characteristic equation becomes quite

complicated. If we simplify the system for the moment by considering a 'I
membrane shell, we see that the eigenvalues at large wavenumber are

limit X (2 + n2), (2-,u)(2 + n 2), 1 for q-1,2,3. (3.9)
nq

By solving the equations of motion for displacement ratios, it can be

shown that
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limit IOnnfI evaluated at Xni - (&2 + n2) >> 1

limit {IVn/WnI evaluated at X., - (&2 + n2)} << 1

which indicates that Xni &2+n2 is associated with a primarily axial

displacement and is a generalization of the axisymetric solultion to

account for circumferential mode order number. Likewise,

limit 1I0n/4nI evaluated at Xn2 - (l)(2 + n2 )} << 1

limit {I~nWn evaluated at Xn2 -( &)(E2 + n2 )} >> 1

indicates that Xn2-(l- )(&2 +n 2)/2 is associated with a primarily circum-

ferential displacement. This is also a generalization of the axisymmet-

ric solution. Finally,

limit { It/Wnl evaluated at n3=- 'I = 0

limit I /WJn evaluated at 11= 0

which indicates that Xn3-1 is associated with primarily radial motion.

This is not surprising since the large wavenumber approximation of 03

of a membrane shell is unity.

For the general theory containing bending terms, these results

can be extended to yield

X 2 +n 2

n2 7- )(&2 + n2  (3.10)

An3 + 1
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which are valid at large axial wavenumber for all n. Note that these

results indicate that neither the longitudinal nor torsional branch is

sensitive to changes in shell thickness at large wavenumber. This will

be found to be true not only at high wavenumber, but over the entire

wavenumbe r range.

It is interesting to note that the axisymmetric, large wavenumber

behavior of the longitudinal branch matches the behavior of the longitu-

dinal vibration of both an infinite plate and an infinite bar, and that

this behavior is nondispersive. Similarly, the axisymetric mode of the

torsional branch at high wavenumber approximates the nondispersive

behavior of the torsional vibration of a solid circular rod, which is

the analog of horizontally polarized S waves in a plate. Likewise, the

axisymmetric mode of the flexural branch approximates the dispersive

behavior of flexural waves in a plate at large wavenumber. Examination

of Equation (3.10) indicates that for each branch the higher mode order

numbers behave like the axisymetric mode in the region n<<&.

3.4 Branch Behavior Near the Cutoff Frequencies

The lower cutoff frequency represents the transition between real

and complex wavenumber space. The lower cutoff frequency nomenclature

is introduced to distinguish between an upper cutoff frequency which

exists when fluid loading is present. For the shell in vacuo, the upper

cutoff frequency is infinite and the lower cutoff frequency can be %

referred to as simply the cutoff frequency without ambiguity. Above the

cutoff frequency, a real wavenumber exists, the characteristic matrix w

(Al is Hermitian, and wave motion can propagate freely at a finite wave

velocity. At the cutoff frequency the phase velocity in the axial 'a

direction becomes infinite while the group velocity goes to zero, indi-

cating that energy is no longer propagating. Below the branch cutoff

le-I
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frequency, only a complex wavenumber can exist and free wave propagation

in the axial direction is no longer possible. In this region, the char-

acteristic matrix is no longer Hermitian but remains symmetric.

The branch cutoff frequencies can be found by evaluating the

characteristic equation at infinite wavelength (zero axial wavenumber)

where the motion is independent of the axial coordinate. For nonzero

mode order, the characteristic equation becomes

( 1 1 - nq )[( 2 2 - nq )(" 3 3 - q ) - 3 ] = 0 (3.11)

at infinite wavelength. The modal cutoff eigenvalue of the qth branch

is denoted by XCq. The coefficients iij are given by Equations (2.21)

calculated at &-0. The association of a branch nomenclature with a cut-

off frequency is done by extending the nomenclature introduced at large

axial wavenumber down to zero axial wavenumber by continuity of the fre-

quency spectra. In the vicinity of the cutoff frequency, the branch

nomenclature no longer indicates the primary vibrational mode associated

with the eigenfunction.

At zero axial wavenumber, the longitudinal displacement is inde-

pendent of both the circumferential and radial displacements. This lon-

gitudinal shear vibration is the second pure wave type possible in a

shell and can exist only at the cutoff frequency of the torsional branch

given by

Xc 2n2 "11 (1-)(i+0) n . (3.12)

This is essentially a generalization of the purely torsional, axisymmet-

ic mode at higher mode orders. Above the cutoff eigenvalue, the longi-

tudinal displacement is again coupled. In the vicinity of the cutoff

eigenvalue, the second branch exhibits a primarily axial displacement.
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The right hand term in Equation (3.11) corresponds to plane-

strain shell vibrations and yields cutoff eigenvalues given by S

i = (n2 + 1 ) 2 + 0(n 2  1) 2  (3.13)

c (n -) 2  2

Xn3 0 n (3.14)
n+1

where a truncated, binomial expansion has been used to approximate the

square root. It can be shown that

limit {IVn/WI evaluated at Xc } = n >1

which represents a predominately circumferential displacement. Hence,

in the vicinity of the cutoff eigenvalue, the first branch exhibits

primarily circumferential vibration for n>0. Likewise,

limit {tVn/OnI evaluated at Xn3 ) - n- < 1

indicates that the third branch exhibits primarily radial motion at low

wavenumbers for n>0.

For the axisymmetric mode, Equations (3.12)-(3.14) still correct-

ly predict the cutoff eigenvalues. However, the branch behavior changes

near cutoff due to the uncoupling of the circumferential displacement at

all wavenumbers. It can be shown that

limit (1/ evaluated at X0
1 -0

0.

which indicates a totally radial displacement. Therefore, near the cut-

off eigenvalue, the first branch exhibits primarily radial motion. Note

that Qc -/l+a is the normalized ring frequency for flexural waves on a
01



49 I

thin, cylindrical shell. As expected, the normalized ring frequency

would be unity for a membrane shell. Likewise,

c

limit fU00/f.0I evaluated at X03j = -

&-+-

indicates that the third branch consists primarily of axial motion at

low wavenumbe r.

Figure 3.1 shows the behavior of the cutoff frequencies versus

circumferential mode order for each branch at several normalized shell

thicknesses. The curves are shown as a continuous function for conven-

ience only. As is expected from Equations (3.12) and (3.13), for thin

.hells, variations in shell thickness have little effect upon the low

wavenumber behavior of the longitudinal and torsional branches. At

large mode order, the cutoff frequencies can be approximated by

2c
nl n

n2 1 n for n>>l (3.15)

Qc - ' n2 3 n

Figure 3.1 demonstrates that the low-frequency spectrum consists of a

finite number of propagating modes for each branch. That is, the shell S
displacement distribution can be described by a finite number of terms

in the series representation given by Equations (2.13). For example,

below the ring frequency (Q=-1.0) the longitudinal branch does not con-

tribute at any mode order. Below 9=0.5, only a single torsional mode

(the axisymmetric) and a finite number of flexural modes contribute. In

general, thinner shells contribute more flexural modes to _he displace-

ment field than do thicker shells.

4 "% '%~ %*~ ' * a~ ~~ V ~ . . s-.. . . .
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Figure 3.1. Branch behavior of the lower cutoff frequency versus
circL.naferential mode order number for a cylindrical shell in vacuo at
several values of normalized shell thickness. Continuous curves are
shown for convenience ornly.
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3.5 Physical Description of the Branches

The total displacement field of a shell consists of the sum of

the contributions from each circumferential mode order. Similarly, the

modal displacement field consists of the contributions from each branch

which, in turn, depend upon contributions from each degree of freedom.

For the Flugge theory, the degrees of freedom are the axial, circumfer-

ential, and radial displacements of the shell's middle surface.

Figure 3.2 shows the fundamental, dynamic motions associated with

the axisymmetric mode. Each branch is characterized by a frequency de- 6

pendent, weighted sum of these fundamental motions. From this perspec-

tive, a zero cutoff frequency must be physically associated with a rigid

body motion. In the axisymmetric mode, both the second (torsional) and

third (flexural) branches have a zero cutoff frequency. At this fre-

quency, the branches respectively exhibit circumferential or axial

motions. This is physically realizable as a rigid-body rotation or

translation of the shell. Since a rigid-body radial motion is not pos-

sible in the axisymmetric mode, the primarily radial motion exhibited by

the first branch (longitudinal) at low wavenumber must have a nonzero

cutoff frequency. Also, since the cutoff frequency implies motion inde-

pendent of the axial coordinate, the shell acts like a ring of rectangu- N

lar cross section. The fundamental resonance must be the ring resonance 6%

v+1 which is, indeed, the cutoff frequency of the first branch.,-

The fundamental, dynamic motions of the first mode order (beam

mode) are shown in Figure 3.3. Each dynamic motion is proportional to

either cos(e) or sin(e). A rigid-body translation in the radial direc-

tion is now possible. This is reflected by the zero cutoff frequency of

the third branch (flexural) which consists of primarily radial motion at

elong wavelength. Figure 3.4 shows the dynamic motions of the second
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Figure 3.2. Axisymetric dynamic motions of a vibrating thin
cylindrical shell.
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Figure 3.3. First mode order dynamic motions of a vibrating thin
cylindrical shell.
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Figure 3.4. Second mode order dynamic motinns of a vibrating thin
cylindrical shell.
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mode order. For this and all higher mode orders, each dynamic motion

will exhibit 2n nodal lines in the circumferential coordinate. However,

the general displacement field of the branch would be quite complicated.

3.6 Frequency Spectra, Dispersion Curves, and Group Velocity

Frequency spectra for the real positive branches of the shell in

vacuo are shown by Figures 3.5 to 3.7 for n-0 to 10. The symmetric

extension into negative, wavenumber space is not shown. The frequency

spectra were computed from Equation (3.4) by use of Laguerre's method.

The nomenclature A, C, and R on the figures indicates the primary dis-

placement is either axial, circumferential, or radial within the indi-

cated wavenumber region. The frequency spectra of the shell's longitu-

dinal branch is also compared to that of the longitudinal vibration of a

bar, namely

Similarly, the torsional branch is compared to the torsional vibration

of a bar or membrane shell with a frequency spectra given by

The flexural branch is compared to the behavior of both the classical

and Timoshenko-Mindlin plates. The frequency spectra of a classical

plate in vacuo is

while
'++
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Figure 3.5. Real, positive frequency spectra predicted by Flugge theory
for the longitudinal branch of a cylindrical shell in vacuo at various
mode order numbers. A, C, R designate that the displacement field is
primarily axial, circumferential, or radial in the indicated wavenum~er
region. Comparison is also shown with classical bar theory.
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Figure 3.6. Real, positive frequency spectra predicted by Flugge theory
for the torsional branch of a cylindrical shell in vacuo at various mode
order numbers. A, C, R designate that the displacement field is
primarily axial, circumferential, or radial in the indicated wavenumber
region. Comparison is also shown with classical bar theory.
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Figure 3.7. Real, positive frequency spectra predicted by Flugge theory
for the flexural branch of a cylindrical shell in vacuo at various mode
order numbers. A, C, R designate that the displacement field is
primarily axial, circumferential, or radial in the indicated wavenumber
region. Comparison is also shown with classical and Timoshenko-Mindlin
plate theory.
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defines the frequency spectra of a Timoshenko-Mindlin plate in vacuo

(Mindlin (1951)]. The normalized plate moment of inertia is I - 0 and

the normalized shear deformation factor is

S 241

The classical bar and plate represent the high frequency limit of Flugge

shell theory, as can be seen by comparison with Equation (3.10).

The central region of the wavenumber spectrum is characterized by

strong coupling of the middle-surface displacements. As can be seen,

the frequency spectra agree with the previous large and small wavenumber

discussion. Note that the large linear regions of the curves indicate

that the large and small wavenumber approximations are valid over a wide

range. Also, the range of validity of the zero wavenumber approximation

tends to increase with increasing mode order for all modes with a non-

zero cutoff frequency. A similar behavior is observed with the thick-

ness parameter 0. A region of nondispersive behavior would be indicated

on these logarithmic frequency spectra as a linear region with a slope

of unity as is the case in Figures 3.5 and 3.6 for classical bar theory.

Dispersion curves are given by Figures 3.8 to 3.10 for n-0 to 10.

Note that in terms of normalized parameters, the normalized phase veloc-

ity is given by

C
I C p .

where cp is the low frequency phase velocity of compressional waves in a

plate. Nondispersive regions of the wavenumber spectrum would be indi-

cated by a zero slope.
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Figure 3.8. Normalized dispersion curves predicted by Flugge theory for
the longitudinal branch of a cylindrical shell in vacuo at various mode
order numbers. Comparison is also shown with classical bar theory.
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Figure 3.9. Normalized dispersion curves predicted by Flugge theory for
the torsional branch of a cylindrical shell in vacuo at various mode
order numbers. Comparison is also shown with classical bar theory.
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Figure 3.10. Normalized dispersion curves predicted by Flugge theory 0
for the flexural branch of a cylindrical shell in vacuo at various mode
order numbers. Comparison is also shown with classical and
Timoshenko-Mindlin plate theory.
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In terms of normalized parameters, the group velocity is given by

C4

Normalized group velocity versus wavenumber curves are given by Figures

3.11 to 3.13 for n=0 to 10. The group velocity was calculated from the

frequency spectra by use of a five-point, cubic spline function and then

by differentiating the resulting approximation. Reference is made to

Forsythe, Malcom, and Moler (1977). The technique locally approximates 0

the frequency spectra over five points centered on the point of interest

by fitting cubic polynomials between each pair of points. Adjacent

polynomials join continuously with continuous, first and second deriva-

tives. The resulting spline function minimizes its potential energy

and, in this sense, uniquely possesses the minimum curvature property of

all functions interpolating the data. The resulting approximate poly-

nomial function can then be easily differentiated and evaluated at the

center point to yield the normalized group velocity.

Comparison of the phase velocity and group velocity curves shows

that, for those modes with a nonzero cutoff frequency, the normalized

phase velocity approaches infinity and the normalized group velocity

approaches zero as the wavenumber approaches zero, indicating energy is

ceasing to propagate. For both the longitudinal and torsional branches,

the high wavenumber behavior is nondispersive. If both C§ amd CG were

plotted together versus wavenumber, the result would be the classical

behavior associated with normal mode propagation in a duct. For the

longitudinal branch this relationship would be given by C CG=I while for

the torsional branch it would be C C =(+o),,2. At large axi.l wave-

'IbI%
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Figure 3.11. Normalized group velocity versus axial wavenumber curves
predicted by Flugge theory for the longitudinal branch of a cylindrical N
shell in vacuo at various mode order numbers. Comparison is also shown
with classical bar theory.
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Figure 3.12. Normalized group velocity versus axial wavenumber curves
predicted by Flugge theory for the torsional branch of a cylindrical
shell in vacuo at various mode order numbers. Cmaio sas hw
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Figure 3.13. Normalized group velocity versus axial wavenumber curves
predicted by Flugge theory for the flexural branch of a cylindrical
shell in vacuo at various mode order numbers. Comparison is also shown
with classical and Timoshenko-Mindlin plate theory.
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number, the flexural branch exhibits the behavior C.=2CG, which is the

dispersive behavior governing flexural waves in a plate.

The effect of the normalized shell thickness upon the behavior of

the flexural branch is shown in Figures 3.14 to 3.18. For those modes

which have a zero cutoff frequency, namely the axisymmetric and first

beam modes, the branch behavior clearly has three regions of distinc-

tion. At low frequency (below Q9-), the branch acts in a manner similar

to a membrane shell. At normalized frequencies above approximately two,

the flexural branch behaves like flexural waves on a classical plate. A

transition region exists between the membrane and plate regions in which

bending terms become important. As the mode order increases above one

and the shell becomes thicker, bending effects begin to dominate the en-

tire wavenumber spectrum. Both the longitudinal and torsional branches

are insensitive to variation in normalized shell thickness.

3.7 Comparison of Flugge and Gazis Theory

Approximate thin shell theories and shell theories based upon the

exact three-dimensional equations of elasticity were discussed in the

previous chapter. This section compares the results obtained by the

approximate theory of Flugge with a theory developed by Gazis (1959)

based upon elasticity. Graff (1975) provides an excellent discussion of

Gazis' theory.

Upon examination, the equations developed by Gazis are quite

complicated. Evaluation of the characteristic equation requires the

solution of a 6X6 determinant whose terms contain Bessel and modified

Bessel functions of the first and second kind. Spurious solutions may

be generated in the transition region between the Bessel and modified

Bessel functions. These and other numerical problems are discussed in

the original references. Since the main purpose in using an approximate
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theory was to avoid the complexities of an exact, elastic theory, Gazis'

equations were not evaluated directly. Instead, selected results pre-

sented in the original papers were reproduced and enlarged by a duplica-

tion process and then compared with results generated by Flugge theory

using similar parameters.

In all cases, only the lowest three branches predicted by Gazis'

theory were used. Poisson's ratio was taken as 0.30 and the normalized

thickness was taken as 1/30. All variables from Gazis' work have been

converted to the parameters used in this thesis. Figure 3.19 shows a
4.

fiequency spectra comparison of Flugge theory and Gazis theory at axial

wavenumbers less than 3n for the n= and 2 modes. As can be seen, all %

three branches exhibit excellent agreement between the two theories over

the wavenumber range. Figure 3.20 extends the frequency-spectra compar-

ison to large wavenumber. The torsional branch has excellent agreement

over the entire wavenumber range shown and the longitudinal branch

exhibits reasonable agreement up to &=70. The flexural branch shows a

reasonable agreement between the two theories below &-30. Figure 3.21

compares the normalized phase velocity predicted by the two theories for

the first and second mode orders for wavenumbers less than 12n. The

theories show reasonable agreement over the entire range.

While the limits of validity of the Flugge theory in wavenumber

space are interesting from a mathematical view, the limits in frequency -

space are of more practical interest. The forced motion of the shell is

dependent upon all three branches, as will be discussed in the next

section. If we assume that Gazis' elastic theory is correct at large

wavenumber, then the Flugge theory will be limited by frequencies at

which the flexural branch is reasonably valid. For h=1/30, this would

be below a normalized frequency of 25 which corresponds to a frequency

lop
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approximately three times the coincidence frequency of a plate with the

same thickness. In terms of plate coincidence frequency, this limit

will also be taken as an approximation of the upper frequency limit of

validity for h-1/100 for a shell in vacuo. It is expected that the

addition of fluid loading to the problem would increase this frequency

limit since the contribution of the shell would only be part of the

total solution.

Although the comparison with Gazis' work has been limited to the

n-l and 2 modes, it is expected that the higher-order modes behave simi-

larly. Gazis shows a convergence of mode behavior above &-3n in Figure

3.21 which also occurs for modes above n-2. Similarly, the Flugge

theory shows mode behavior convergence in Figures 3.5 to 3.7 above &=30,

such that the relationship between the two theories above &-30 for all

mode orders should be represented by Figures 3.19 to 3.21.

3.8 Forced Motion of a Shell In Vacuo

Assume the shell in vacuo is harmonically excited by a point

force applied radially outward at the origin of the form

F
fd(x,e,t) - 6(xR) 8(e) exp(-jwt) (3.16)

such that

F
Ed( ,e,t) - Rr()) exp(-jwt)

where Fr is the force magnitude, and w is the driving frequency. In

matrix notation, the equations of motion, Equations (2.20), become

([wo is gv by = I21 (3.17)

~where the force matrix is given by
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F~ 0 FF r(.8,and n2F 2 2nDR2 (.8

is a nondimensional modal force. CRI and CRJ have been previously

defined, and (I] is again the identity matrix. An applied axial or

circumferential force would generate nonzero elements in row 1 or 2 of

the force matrix. A distributed load would yield elements which were a

function of mode order or axial wavenumber. The specified system has a

modal solution given for n>0 by

jFm12m2 3 m1rn3 (m12 2 -Q)Un() j n det([M] 9 111)

V n(&) - F n (3.19a)
fl n det([I - [ I])

2i1  2 -2
11 ('122- " ) 2

F(E n= F
Sdet([Pi] - Q (I])

For the axisyinmetric mode, V(U-)' and
0

-2
m13

U jF0- 2 - 2) 52
(m 1 1 -2)(m22 -2)

(3.19b)

W 0 (&) - F 0  2~ul 2 -i

in general, the determinant of the coefficients can be written as

2 6 4 92det([M] - Q9 [ID] - i + s 2 9+ s39+ S 4  (3.20)

where the s. were previously defined in Equation (3.5). An equivalent
I

form is given by
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det([i1 - Q2 [1]) - S Q6 6 ) + S 4 21 nq 2 nq 3 2  nq (3.21)

with Q taken as any of the natural frequencies of the shell in vacuo.nq

Let us now define a spectral modal mechanical impedance for the

shell as

DFn sn()n XcsnZwhere X ( 3.22) "Zsn( - _in. sn Xsn N ( ,.?

which is purely reactive for an undamped shell. Note that the dimen-

sional form of the transformed displacement has been used. This will be

a useful definition for the fluid-loaded problem. Further note that

Zsn(&) is not related to the transform of the driving-point impedance of

the shell, since multiplication (and division) in one domain is repre-

sented by a convolution in the transformed domain. In this sense, the

nomenclature is artificial. However, Z (&) does represent the total
sn

contribution of the shell to the fluid-loaded problem and, in that
sense, is analogous to an impedance. The normalized reactance X sn(&)

acts as a normalized spectral stiffness that is defined by polynomials

in &2 given by

Ds(&) -det([M] - Q2 [I for n>0

2 (ll - Q2 - Q2 - i2 for n-0 (3.23a)

and

N ~)-2 2) i-2,
sn(&) (M11 - )(m22 - 2)-r 12  for n>O

M 2 f for n-0 (3.23b)

at fixed, normalized, driving frequency 9. In general, these components
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can be written as

Dsn - a1 8 + a2 6 + + a4 + a5 (3.24)

Nsn( ) - & + +

where a. and b. are constants dependent upon n, Q, 0, and u and where

a1-bl-0 for the axisynietric mode.

At high frequency the normalized shell spectral stiffness

function can be approximated by

limit Xsn(&) + n2 ) 2  92 (3.25)

If we define an effective structural wavenumber as

k5 - it. + n2

then the high frequency approximation can be put into a form analogous

to the plate impedance function but where the higher mode order nature

of the shell has been preserved. The functional relationship expressed

by Equation 3.25 is also valid for either large axial wavenumber or mode

order at any frequency.

The transformed displacement solutions to the forced vibration

problem given by Equations (3.19) could be introduced into the displace-

ment relations given by Equations (2.22). For each displacement, the

denominator of the inverse Fourier integral would be Dsn(&). If the

integration were carried out over the complex &.-domain, the roots of

D (&), which are the shell branches, are seen to represent the poles of
sn

the problem. For fixed Q, each mode would contain eight poles repre-

senting both the positive and negative wavenumber spectrum. At driving

-k
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frequency less than the cutoff frequency of one or more branches, some

of the poles would be complex. Second-order poles and complex-conjugate

poles may also exist. The total solution would be given by the double

sum of the residues over all of the mode orders.

Only radial vibrations can radiate energy into an inviscid fluid

medium. Therefore, the acoustic field generated by a vibrating shell

will be dependent only upon the shell's radial motion. If fluid loading

upon the shell was not considered, such as for a low-density medium like

air, then this radial displacement would be given by Equation (2.22) for

a shell in vacuo as

W(X(3t)- Cco~n)) exp(J~x) d exp(-jwt) (3.26)
w(x,, t) Wref Z] cos(n) Xsn( e) ,

n=o _ n

written in terms of the normalized shell stiffness. The term

F
Wref = 2

(2mR) D

is a convenient normalized reference displacement. Since an acoustic

field cannot create surface tractions, the effect of including fluid

loading upon the shell will be only a radial effect. As will be seen,

fluid loading will reduce the number of real branches from three to one,

and this remaining branch will be a deformed version of the flexural

branch in vacuo. In addition, the concept of a cutoff frequency will

become more generalized to include the dual concept of a cutoff wave-

number. These topics will be covered in the next chapter. ,.

61111 1



Chapter 4

VIBRATION OF A FLUID-LOADED CYLINDRICAL SHELL

4.1 Introduction

This chapter will discuss the vibration of a shell in the pres-

ence of an external fluid. Important mathematical preliminaries will be

introduced that are required in the next chapter where Cauchy's theorem

and integral formula are used as a solution of the acoustic pressure

field. Boundary conditions at the shell-fluid interface and at infinity

are used to specify a spectral modal specific acoustic impedance that K
modifies the in vacuo integral representations of the radial displace-

ment and the transformed acoustic pressure. Unlike the in vacuo case,

the addition of fluid loading requires that both the radial displacement

field and the acoustic pressure field be dependent upon a radial wave-

number that is a multi-valued function of the axial wavenumber. Con-

cepts of branch points and branch lines are introduced to force single-

'I' valued behavior. The behavior of the normalized spectral modal acoustic

radiation impedance is presented over the entire complex radial wave-

number domain. Physical and mathematical reasons are presented to favor

the choice of the Somnerfeld branch lines for this problem. Existence

properties of the singularities are developed. The location and behav-

ior of both real and complex singularities of the fluid-loaded problem

are presented. Their behavior is compared to the in vacuo branches of

free vibration. For circumferential mode orders greater than one, the

real branch of the fluid-loaded problem has a finite bandwidth defined

by both a lower and an upper cutoff frequency. As mode order increases,

Wr Vwr 0 W 0 * R0N~.
4

,
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this bandwidth decreases such that above a critical mode order no real

branch exists.

4.2 The Acoustic Loading Term

Assume the shell is externally surrounded by a fluid medium of

characteristic acoustic impedance pc. A harmonic point force directed

radially outward is applied to the shell in the manner discussed in

Section 3.8 for a shell in vacuo. The internal region of the shell is

again taken as a vacuum such that acoustic energy is only radiated

externally into the fluid. The acoustic pressure field is governed by

the wave equation

R p(rext) 2 p(r,e,x,t) (4.1)
R , c2 t2

in normalized coordinates. The normalized Laplacian operator is related

to the un-normalized operator by V2 R2(VR)2 where R is the normalizing

constant taken as the middle-surface radius of the shell. Therefore, in

normalized cylindrical coordinates

2 R-2 32 - r2 - 1 a a2 a 2
(VR) + r + r T (4.2)

For time harmonic excitation, the governing equation can be written as

2 R-2k2(V R k ) p(r,e,x) - 0 (4.3)

where

k - Rw/c c pQ/c (4.4)

is the normalized acoustic wavenumber.

Equation (4.3) can be solved by first taking the Fourier trans- 0

form in the axial coordinate and then assuming a separation-of-variables

U' . .>- . U.,U. U . :'.', f. * '.*., *\,, _ ,-, .'- - .,-.- *"U* * v, . ,' P -. , *' ' ., 9.. : . ;<' .. ;.-:
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solution [e.g. Morse and Ingard (1968)]. The transformed acoustic

pressure would generally be given by

CD () ( ) { sin(me)
Z ] [am(M)H(1)(yr) + bm(&)H(2 )(yr) I( (4.5)

M-0 Lcos(me))

with & the normalized axial wavenumber. Parameter y is a separation-of-

variables constant which represents the normalized radial wavenumber and

is subject to the constraint

Y 2 . k2  2 (4.6)

The infinite Fourier series representation is due to another separation-

of-variables constant which has been restricted to integer values by

continuity considerations on the circumferential coordinate. The inte-

gers m represent mode orders and, as in the case of shell displacements,

the transformed acoustic pressure is expressed as the sum of modal con-

tributions. The functions H (1)yr) and H(2) are Hankel functions ofm m
the first and second kind defined by Abramowitz and Stegun (1972) as

H (1 ) ( Jm(z) + j Ym(z)

H(2)(z) J J (z) - j Ym(z)

where Jm(z) and Ym(Z) are Bessel functions of the first and second kind

of argument z and order m. In order to account for a logarithmic singu-

larity in Y (z) at zero argument, the -f-plane will be cut along the neg-

ative real axis so that -a<arg(y)<+n defines the principal valued branch

of the Hankel functions. Parameters am() and b (M) are coefficients tom m
be determined from the boundary conditions.

In addition to the constraints on the separation-of-variables

constants y and m, implicit boundary conditions exist which can also be

-~V r. - C % *~~ ~~- ,**~~
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applied to the solution as given by Equation (4.5). The first of these

concerns the circumferential dependence of the pressure field. Since

the acoustic field is due solely to the radial vibrations of the shell,

the pressure field must have the same circumferential dependence as the

radial vibration distribution, namely cos(me). The radiation condition

also serves as an implicit boundary condition. For harmonic excitation

of the form exp(-jwt), the large argument approximation of the Hankel

function of the first kind represents energy propagating outward for an

implied positive sign associated with the square root of Equation (4.6).

Conversely, the Hankel function of the second kind represents energy

propagating inward. In the absence of acoustic sources other than the

vibrating shell, the field in the surrounding homogeneous medium of

infinite extent can contain only waves propagating outward, or b,(&)=O

and

p~re,) E a (&) H(1)(yr) cos(m9) (4.7)

M1-0 m

For brevity the Hankel function of the first kind will be denoted simply

as Hm"Z), e-'=t in situations where ambiguity might occur with the

function of the second kind.

The unknown modal coefficients am(&) can be found by application

of the continuity-of-particle-velocity boundary condition

pR (xt - - - p(r,e,x,t)

at the normalized outer radius of the shell a. In normalized transform-

ed variables, this condition becomes

2 2-PCpQ W(e, ) = -- p(r,e,&) (4.8)

9 Iq %I* I I
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evaluated at r - a. By introducing Equation (4.7) for p and the trans-

form of Equation (2.13) for w, multiplying through by cos(ne), integrat-

ing e over O<9<2n, and applying the orthogonality condition given by

Equation (2.15), we yield the modal relation

a ) - PC 2 ,(4.9)mp y yH(ya)

The prime notation designates the derivative of the Hankel function with

respect to its total argument such that

Hm(z) - laz Hm(Z)

The transformed acoustic pressure at any point in the fluid medium is a

known function of the transformed radial displacement of the shell.

It will be convenient to define a spectral modal specific

acoustic impedance as

pm( ) Hin(yr )
Zf(yr) - m - j Hck m (4.10)

fm mf
-j mY H Hm(ya)

which represents the contribution of the fluid to the problem. Let us

also define a normalized spectral modal acoustic radiation impedance as

H m()a)
mZ am(Y) - H' (4.11) .

y Hm(ya) '

such that at the shell Zfm(Ta) - jPckZam(y). The transformed acoustic

pressure could now be written in the form

P(r,e,&) - -jck 0Zfm(yr) Wm( ) cos(me) (4.12)
IT-0

N -N.'N
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The inverse Fourier transform of this expression would be valid at all

points in th fluid medium and will be extensively discussed in the next

chapter. itle transformed acoustic loading on the cylindrical shell

would therefore be given by 5a(9,&) - p(a,e,&).

4.3 The Fluid-loaded Characteristic Equation

In the absence of an applied force, introduction of the acoustic

loading term pa(8,E) into the transformed equations of motion of the

shell, given by Equation (2.20) yields

[[A] + [A]} [k] Q 2  (4.13)

where (M] remains the shell stiffness matrix defined by Equation (3.2),

[Mf] is the fluid reaction matrix, and [R] is the transformed modal

deformatinn matrix. The fluid reaction upon the shell is given by

0 0 0 ]!
[Mf] 0 0 0 (4.14)

0 0 AZ an ,

where an%

2 2Cp 29= s
Ph . (4.15)

and D is the normalized extensional rigidity of the shell. In the

deviation of Equation (4.13) the orthogonality condition was used to

equate shell mode order n and the fluid medium mode order m.

Equation (4.13) can also be written in terms of a characteristic

matrix (A] such that

C'.

+ [11(I 1(X) (A) (R] 0 (4.16)

where [I] is again the identity matrix. Since Z fn is also a function of
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frequencly, neither Equations (4.13) nor (4.16) are in the canonical form

of the eigenvalue problem. In any event, it is more physically reason-

able to consider the values of & that are solutions of Equation (4.16)

for real values of frequency. Non-trivial solutions are given by the

characteristic equation

det [A] 0 (4.17)

Recalling that the in vacuo characteristic matrix was Hermitian for all

real &, it is seen that fluid loading restricts this Hermitian behavior

2 2to real values of the axial wavenumber such that & >k . Therefore, it

is expected that the free vibration of the fluid-loaded shell will like-

wise be restricted to this regime.

Solutions of the characteristics equation are also important

because they represent the singularities associated with the inverse

Fourier integral representation of the forced response of both the shell

displacements and the accistic pressure field. It is perhaps more

informative to write the characteristic equation in terms of the trans-

formed modal impedance functions Zsn defined by Equation (3.22) and Zfn

to yield

det[A] - Zsn(&) + Zfn(Ya) - 0 (4.18)

In terms of these impedance functions, the forced transformed flexural

deformation of the fluid-loaded shell is found to be

Wn(E-) 9 j wref [Zsn(&) + Zfn( ya)] -  (4.19)

were w ref was previously defined. Introducing this expression into

Equation (2.22) yields
I
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W(8x~) -Wr f n0 n cs~S)j' ps cph eJ(E x- t)

w(,xt) w Cref Cen cos(n) Zsn() + Zfn(Ya) d&
n-0 Jn

W O3 ej( .X-Wt) (4.20)ref Z n cos(ne) X( ) + 'Zan(Y) d 4Tn-0 j sn a

Likewise, the acoustic pressure field can be written using Equations

(4.19) and (4.12) as C

p(r,e,x,t) - pref CO cos(ne) Zsn(y) + Zf(ya) d (4.21)

where

F
Pref Dref r 2,2 rR)

is a convenient reference pressure.

Before solutions of the characteristic equation can be deter-

mined, it will first be necessary to specify the mapping between the

complex y and & domains. Due to the dependence on Hn(yr) in the inte-

grand of Equation (4.21), the pressure relation will place greater

restrictions upon the allowable mappings than would the integral of the

displacement field. The next section will introduce branch points, U.

branch lines, and Riemann surfaces in order to specify y as a single-

valued function of &.

4.4 Specification of the Radial Wavenumber

The addition of fluid loading has introduced a transformed radial

wavenumber that is a multi-valued function of &. If the function y is r

IN %
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observed along any closed path in the complex &-domain that contains

either of the points &-_+k, it will be found that y is discontinuous with

phase shift n upon returning to the starting point. Any point which

causes such behavior is defined as a branch point. If a second circuit

about the branch point were made, the function y would return to its

original starting value. Clearly, all points on the complex &-plane

with phase between 0 and 2n are mapped onto one-half of the complex

y-plane, while those points with phase between 2n and 4n are mapped onto

the other half. In order to re-establish a single-valued behavior and

continuity, it is necessary to distinguish between these two regions of

the complex &-domain, each called a Riemann sheet. Their combination is

called a Riemann surface, and a one-to-one correspondence exists between

points on the Riemann surface and points on the complex y-plane.

The branch points represent points at which the two Riemann

sheets are connected. It can also be shown [e.g. Carrier, Krook, and I"

Pearson (1966)] that branch points always occur in pairs and that for

every finite branch point, a branch point also exists at infinity. In

order to force y to be a single-valued on each Riemann sheet, a cut can

be made between each pair of branch points and the two sheets joined

along this cut. Any path which attempts to cross this discontinuity

would be transferred to the other Riemann sheet. Such a barrier path is

called a branch line. If a branch line is formed between each finite

branch point and a branch point at infinity, the branch lines would be

continuous since in the theory of complex variables infinity is consid-

ered to be a single point.

If the radial wavenumber is specified in some region of the corn-

plex &-domain, analytic continuation can be used to specify y everywhere

on the Riemann surface. In considering the integrand of the inverse
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Fourier integral representing the acoustic pressure field, two physical

constraints are helpful in specifying y and choosing branch lines. The

radiation condition requires energy to decay to zero at infinity. The

causality condition requires that energy propagate outward from the

source at the origin.

Let us begin by specifying y at the end points of the integration

path such that both conditions are satisfied. Assume fluid damping is

present such that

k - k r +jkl + J~i' and Y - Yr + JYi

For negative time harmonic excitation it can be shown [e.g. Skudryzk

(1971) p. 32] that both kr and ki are positive. At the integration path

end points

2Y = 1-& + 2jk rk. for r~ - tC

such that 1Y1 - 'erl and arg(y) equals +n/2 for the positive square root

and -n/2 for the negative square root. Recalling the inital formulation

of the acoustic field solution, Equation (4.5), both the Hankel function

of the first and second kind were present. From the large argument ap-

proximation of these functions, it is obvious that if the radiation and

causality conditions are to apply at the end points, then the function

of the first kind must be associated with positive square root while the

function of the second kind is associated with the negative square root.

The choice of which pair to use is arbitrary. In keeping with conven-

tion, the positive square root has been assumed.

From this definition of Y at the end points of the real integra-

tion path, the radial wavenumber can be analytically continued through-

out the complex &-domain. The choice of branch lines will uniquely
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define how we wish the analytic continuation to be applied. In theory, k
any path connecting pairs of branch points is an acceptable branch line.

Often physical arguments are used to restrict the choice. For example,

a branch line connecting the two finite branch points at -±k along the

real axis (or any other direct path) does result in a single-valued

behavior on each Riemann sheet, even for paths which enclose both branch

points (and the entire branch line). However, it can be shown that the

integrand does not obey the radiation condition along this branch line

and that in the presence of fluid damping the branch line breaks the

integration path along the real axis. For either of these reasons, this

particular branch line would be unacceptable for our problem.

The proper, or Sommerfeld, branch lines are chosen on physical

grounds because along them the integrand obeys both the radiation and

causality conditions. For large r, the Hankel function of the first

kind must be restricted such that O<arg(y)_n/2 if both the radiation and

causality conditions hold. This is equivalent to stating that the phase

of Y2 must have a value between zero and n, or

0 -< tan- 2 ( k - i- &J i)I <1
r- i - r iJ

This relationship will be true for all kr ki> & i for both kr and ki pos-

itive. The boundary of this region is equivalent to the condition of

zero Imry and is defined by

r ki - k rki (4.22)

which is recognized as a rectangular hyperbola in the first and third

quadrants, see Figure 4.1(a). We see that on this boundary

I

br .4- w"
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Y M2_,k' .2- &2 +
V-Vr - r  1 r +  I

Therefore a second requirement exists that

2 2 < k 2  (4.23)
r i - r I

which is the region between a pair of equilateral hyperbolas with foci

on the &r axis for kr>ki (assumed). At a branch point, the inequality

becomes an equality, and the branch point is given by the intersection

of these two pairs of hyperbolas, or &=k, as expected.

The addition of fluid damping results in the branch points rotat-

ing away from the real axis in a counter-clockwise manner. The singu-

larities of the integrand can also be shown to rotate similarly when

fluid damping is included. In the limit as ki-*O, the branch points

return to the real axis, and the branch lines take the form of the

classic L-shaped cuts, as shown in Figure 4.1(b). If structural damping

is included in the shell through a complex elastic modulus, the singu-

larities of the integrand again will rotate in a counter-clockwise

direction from the undamped case. However, the acoustic wavenumber k

will remain unchanged such that structural damping will have no effect

upon the branch points or branch lines.

If we also consider the inverse Fourier kernel ei& X also present rI
in the integrand, it is required that for both the radiation and causal-

ity condition to hold both &r and &i must have the same sign as x. Now

it is clear that the branch point in the first quadrant is associated

with positive axial distance and the branch point in the third quadrant

is associated with negative axial distance. This implies that for x>O

the contour integral should be closed in the upper half-plane of either

Riemann sheet of the complex &-domain, while for x<O closure should be
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in the lower half-plane. The proper, or Sommerfeld, branch lines would

be given by Equation (4.22) in the region defined by Equation (4.23), as

shown in Figure 4.1(a). Since the Riemann sheet that consists of points

in the complex a-domain with phase between zero and 2n maps onto the

upper half of the complex y-plane, this sheet will be called the top

Riemann sheet. Likewise, the other Riemann sheet will be called the

bottom Riemann sheet. The mapping between the y and & domains is shown

in Figure 4.2 for the top Riemann sheet. The phase of y would be nega-

tive on the bottom Riemann sheet. Note that the phase of y is undefined

at the branch points.

4.5 The Normalized Spectral Modal Acoustic Radiation Impedance

The normalized spectral modal acoustic radiation impedance Z an(y)

arises in problems governed by the wave equation in cylindrical coordi-

nates. Many authors have studied this function for real or imaginary

argument. An excellent example is Junger (1953). These studies are

valuable when performing numerical integration along the real axial

wavenumber axis or in some far field approximations. For problems that

involve deformation of the integration path into the complex &-domain

where Y is also complex, such as steepest descent approximations or the

formal Cauchy integral solution, the general behavior of Zan(Y) is of

interest. The behavior of the acoustic radiation impedance also pro-

vides rigorous mathematical grounds for choosing the Sommerfeld branch

lines.

Branch lines are used to specify y as a single-valued function of

E. From a purely mathematical perspective, any branch line between two

branch points is acceptable. One may choose whatever path is convenient

for the particular problem at hand. Although physical reasoning was

employed in the last section to select the Sommerfeld branch lines, this

,S.
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Figure 4.2. Mapping between the complex y/k domain and the top Riemann
sheet of the complex 4/k domain. Contours of constant phase and
magnitude of 7/k are shown for real acoustic wavenumnber. Bold lines
indicate the Sommerfeld branch lines.
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was not a mathematical requirement. However, the choice of branch line

will obviously effect the ease of mathematical solution or numerical

simulation. Because the Sommerfeld branch lines coincide with the

boundary between regions in which Zan (y) exhibits "good" and "bad"

behavior, they are superior to other possible branch lines. This

dividing line is the real y-axis. In the upper half-plane, Zan(Y)

behaves nicely. It possesses symmetry and a monotonic behavior. The

bad region, the lower half-plane, contains all of the poles and zeroes

of the function. By using the Sommerfeld branch lines, we can confine

our analysis to the region in which Z (Y) is easiest to evaluate.
an

With the branch line associated with the logarithmic singularity

of the Hankel function taken along the negative real -axis, Zan(y) is

conjugate symmetric in the upper half-plane about the imaginary y-axis.

For a general point y0 in the first quadrant

Zan(YoeJn) = Zan(y 0 ) (4.24a)

where the asterik denotes the complex conjugate. The proof is

H() (Yoa) H(l)(y oeJ e-j)

Z an( Yo n n
. (i) iyoa )  yo.(i4'(YoeJne- j n)ro "n on
o n o n

(2)'(y e-j )F*( * n
YO Hn oyo % Yoe'

By taking the complex conjugate of this relation, Equation (4.24a)

results. Care must be taken to assure that the argument remains on the

principal value branch -n<arg(y)<a. Analytic continuation relations

from Abramowitz and Stegun (1972) were employed in this regard. This

symmetry property will greatly ease the search for eigenvalues of the

i • 1
N
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characteristic equation. A lack of symmetry in the lower half-plane can

be similarly demonstrated. Similar reasoning can be used to show that

for Oarg(y) n the spectral modal specific acoustic impedance obeys the

symmetry property

j

Zfn(Yoe r) - - Zfn(yor) . (4.24b)

Abramowitz and Stegun also discuss the locations of the complex

zeroes of both the Hankel function of the first kind and its derivative.

Excluding the point at the origin, both Hn(ya) and Hn(ya) are analytic

everywhere in the complex &-domain. Therefore, zeroes of the acoustic

radiation impedance coincide with the zeroes of the Hankel function.

Excluding points at infinity, these are confined to the lower half-

plane. Likewise, poles of Zan(y) will coincide with the zeroes of the

derivative of the Hankel function, which again are confined to the lower

half-plane. In the limit as y approaches the origin, Zan(Y) remains

nonzero and finite for all n>O. Only for the axisymmetric mode does a

logarithmic singularity exist at the origin. Since Z yan() is analytic

everywhere in the upper half-plane, by the maximum modulus theorem,

Zan(y) must also be monotonic in this region with its maximum modulus

occurring on the boundary. It can easily be shown that for the axisym-

metric mode the maximum modulus of Zan(y) in the upper half-plane occurs

at the origin. For n>O, the maximum modulus in the upper half-plane

occurs between n-l and n on both the positive and negative real y-axis.

Constant phase and modulus contour plots in the complex y-plane

of the acoustic radiation impedance Z-n(y) are shown in Figures 4.3-4.5

for the n-0, 1, and 2 modes. The synetry, monotonic, zero, and pole

behavior discussed is clearly demonstrated. An infinity of alternating

poles and zeroes exists in the lower half-plane extending along the neg-
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ative real axis. The contrast is striking between the smooth, bounded

behavior of Zan(y) in the upper half-plane and its rapidly changing,

singular behavior in the lower half-plane. These figures strongly

indicate why contours of integration should be avoided that include any

portion of the lower half-plane. The computational routines used to

calculate Hankel functions of complex argument were developed at the

Naval Research Laboratory and are described by Mason (1983).

By using the various asymptotic expressions for the Hankel func-

tions found in Ambramowitz and Stegun, asymptotic approximations of the

specific acoustic impedance Zfn (Yr) and the acoustic radiation impedance

Zan (Ya) can be developed. These will prove useful throughout this

chapter and the next. At large argument

limt Zn(r)=j ck < 4n2-1 4n+3 I  e ( r - a ) y
limit r 2 rI - (a (4.25a)

Z-O fn(r Y ~j L 8yr ByaJ

limit Z (a) + j  (4.25b)
Y-O an I2a

The axisymnetric mode has the small argument approximations

limit Zf0(Yr) = jpcka (In yr - j a/2} (4.25c)
r*O

limit Za0 (y) =a in ya -j n/21 (4.25d)
Y-+0

and

S1 n+ j [an+ (r,, n](2 42e2n

limit Zfn(Yr) =-jpcka j J n(4.25e)

limit Zan(y) =-a n + J (n,)2 (4.25f)

for higher mode orders.
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4.6 Existence Properties of the Singularities

The singularities of the integrand of Equation (4.21) can be

found by solving for the zeroes of the characteristic equation in the

complex &-domain. Since the choice of negative time harmonic excitation

and the sense of a positive axial direction are arbitrary, physical

reasoning indicates that the singularities must exhibit both symmetry

and duality properties. Let us begin by investigating the existence

properties of real and imaginary singularities.

In the complex &-domain, characteristic Equation (4.18) repre-

sents the two constraint equations

Im{Zs(<)} + Im{Zf (ya)] 0 (4.26a)
sn f

and

ReZ sn()} + Re{Zfn (ya) } - 0 (4.26b)

Since the shell impedance is a function of &2, for both real and

imaginary .

Re{Z sn(&) - 0.

For imaginary &, arg(y) will have a value of 0, a, or -n depending upon

which side of the branch line and which Riemann sheet is of interest.

If we consider the analytic continuation relating the Hankel functions

of the first and second kinds, constraint Equation (4.26b) at imaginary

& requires that

IM Hn(y.a) 0 ""

n a

orH n( Ta)

Wronskian {Jn (Ya), Yn (ya) = 2/(nya) = 0 (4.27) 6I0
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be true. Equation (4.27) is valid only at infinite frequency or axial

wavenumber. The former case is not of practical concern and the later

case is not a solution of constraint Equation (4.26a). Therefore,

purely imaginary singularities cannot exist on either Riemann sheet.

Along the region &2<k2 of the real axis, arg(y) again has a value

of either 0, +n, or -n. The problem is essentially that just discussed

except that Equation (4.27) is now valid only at infinite frequency,

which again is not of practical concern. Therefore, real singularities

with magnitude less than the acoustic wavenumber cannot exist on either

Riemann sheet.

The existence of any other real singularities is also important

since they will comprise the residue contribution at most field points.

On the top Riemann sheet, arg(y) = Tt/2 for the region &2>k2 of the real

axis. Along this region, the specific acoustic impedance becomes

Zfn(ye J/2r) - ckn - been (4.28)
Y K (ya)

n

where Y is taken as a magnitude and the phase term has been explicitly .

shown. The function Kn (a) is the modified Bessel function of the

second kind of integer order n and with real argument ya. For positive

real argument, the function Kn and its derivative are real. Therefore,

constraint Equation (4.26b) is identically satisfied, and real singular- "

ities may exist sabject to constraint Equation (4.26a). In the next

section these real singularities will be located, and their behavior

will be discussed. Note that the real singularities must always appear

in positive- and negative-valued pairs.

On the bottom Riemann sheet, along the region &2>k2 of the real

axis, arg(y) has a value of -n/2 and the specific acoustic impedance is

V. V
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-j n/2 Pck Kn(-yr)
Z fn (Ye r) - -j r - - (4.29)

y Kn(-a)

where the function Kn and its derivative are no longer real. For nega-

tive real argument, Kn has an imaginary component proportional to the

modified Bessel function of the first kind In . Introducing Equation

(4.29) into constraint Equation (4.26b) can be shown to require that

r-i1[1(y ]2 K(ya 2 (4.30)n n
be true. Equation (4.30) is valid at infinite , which is not a solu-

tion of constraint Equation (4.26a), or when Y is zero. Therefore, real

singularities cannot exist anywhere on the bottom Riemann sheet except

at the branch point.

It can also be demonstrated on physical grounds that this result

is correct. With negative time-harmonic excitation, a real singularity

on the bottom Riemann sheet would represent energy propagating inward

from infinity. This is physically not possible. This behavior also

points out the duality between Riemann sheets based upon the time har-

monic excitation chosen. At large radial distance the Hankel function

of the second kind is porportional to exp(-jyr). Therefore, for posi-

tive time-harmonic excitation, a real singularity on the bottom Riemann

sheet would correctly represent outward propagating energy. The real

singularities which previously existed on the top Riemann sheet would

now be found on the bottom Riemann sheet.

The location of the complex zeros of Equation (4.21) is a formi-

dable task which can be facilitated by determining the symmetry proper-

ties of both the complex zeros and their residues. Instead of locating
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the complex zeros of the characteristic equation as given, let us solve

the related problem of finding the complex points at which the magnitude

of the impedance terms in Equation (4.21) are equal. Since the specific

acoustic impedance is non-symmetric on the lower Riemann sheet, let us

restrict the discussion to the top Riemann sheet where 0<arg(',)_n.

For a general point &i located in the first quadrant, points

symmetric about the real and imaginary axes can be defined such that

* jj 'M*

&2 = &ie j  &3 1 i e '  and &4 &l

Noting that the shell impedance function Z sn() contains terms of the

form 2m, it is easy to show that

Zsn( ) , Zsn(&4) = - Zsn(Yl), and Z sn( )= Zsn( )

Observation of Figure 4.2 indicates that the radial wavenumber exhibits

the symmetry property

y(Y2) - y( 4 )  y* (& )ej, and y(& 3) - y( )

The symmetry property Zfn(Y*e Jr) - -Zfn(Yr) of the specific acoustic

impedance has been discussed previously. Since the magnitude of a com-

plex quantity is equal to the magnitude of its conjugate, the complex

zeroes of the characteristic equation must be symetric about both the

real and imaginary axes. Therefore, it is sufficient to restrict the

search for complex singularities to any one quadrant.

4.7 Location and Behavior of the Real Singularities

Restricting the discussion to the region &2A2 of the real axis

of the top Riemann sheet where arg(y)= rt,'2, the location of the real

singularities can be found by analyzing the characteristic equation.
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This equation can be written in terms of the normalized shell stiffness

components and the normalized acoustic radiation impedance as

Dsn(k) + & Nsn() Zan( e j /2 ) - 0 (4.31)

where the acoustic radiation impedance has the form of Equation (4.28)

and is real, negative, and monotonically decreases to zero value at

large argument. The variable - is taken as a magnitude with the phase

term explicitly shown. As was done for the in vacuo case, the location

and behavior of the real frequency spectra can be analyzed by using

asymptotic approximations. The large and small argument approximations

of the acoustic radiation impedance are given by Equations (4.25). The

shell stiffness component Dsn() is a fourth order polynomial in

The component N (&) is a second order polynomial in 2 and is positive
sn

in the region of interest. Most of the algebraic details will be

omitted from the discussion.

The axisymmetric (n-0) mode has a zero cutoff frequency and non-

dispersive behavior at small axial wavenumber where the small argument

approximation of the fluid impedance is valid at all frequencies. The

frequency spectra is given by

92 (c ,/c p)2 (4.32)

which is actually valid into the transition region between small and

large axial wavenumbers. Thicker shells exhibit nondispersive behavior

up to higher wavenumbers. Figure 4.6 shows the calculated frequency

spectra for the axisymmetric mode of a steel cylindrical shell in water

for several values of normalized shell thickness. None of the asymptot-

ic approximations were used in calculating Figure 4.6 or any other fre-

quency spectra. Numerical root-finding algorithms searched the entire
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frequency spectra of interest. The approximations were used only to

verify and interpret results.

At large axial wavenumber, either of the large or small argument

asymptotic approximations or the general expression given by Equation

(4.28) may describe the specific acoustic impedance depending upon the

relationship between & and k. However, it is possible to show that at

all mode orders only when &=k are real singularities possible. For

lower frequencies, the shell impedance is much greater than the specific

acoustic impedance, and roots are not possible. It can be shown that S

for the axisymmetric mode at large axial wavenumbers where

> (C/Cp2 p - (4.33)

the frequency spectrum is again nondispersive and described by Equation

(4.32). The frequency spectrum is continuous up to infinite frequency

and wavenumber. The acoustic radiation impedance is approximated by S

Equation (4.25d) at both small and large axial wavenumber.

In the transition region, the acoustic radiation impedance
-I1

becomes smaller until it is proportional to y For wavenumbers in the

upper portion of the transition region, Dso (&) dominates Nso(&), and the

real roots are approximately those of the flexural branch of the shell

in vacuo. In the lower portion of the transition region, the behavior

is more complicated with the shell stifnnes component Ns (&) becoming

more of a factor. The effect is to cause the real branch of the fluid-

loaded shell to occur below that of the shell in vacuo. This is true at

all real wavenumbers, not only for the axisymmetric mode, but for all

mode orders. By comparing Figure 4.6 with the in vacuo data presented

in Figure 3.14, it is seen that the effect of fluid loading on the n=0

mode is to translate the flexural branch downward and to confine it to
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2 2
the region & >k . As in the in vacuo case, the real branch remains

continuous from a zero cutoff frequency up to infinite wavenumber. As

expected, neither the longitudinal nor torsional branches have a real

counterpart in the fluid-loaded case.

As with the shell in vacuo, the first beam mode (n-1) of the

fluid-loaded case has a zero cutoff frequency. However, unlike the

axisynmmetric mode, the behavior at small axial wavenumber is dispersive

with a frequency spectra given by

( - /2 ) sh 2

2P sh + pa (4.34)5]
This is a good approximation of the frequency spectra up to axial wave-

numbers at which the small argument approximation of the specific acous-

tic impedance is no longer valid. This occurs at approximately ya-0.3.

Using this relation to solve for E, it is found that the upper limit of

the dispersive behavior defined by Equation (4.34) is relatively insen-

sitive to variation in shell thickness or material and fluid parameters.

This upper limit occurs at approximately &-_+0.3.

At large axial wavenumber, the first mode order is nondispersive

with a frequency spectra described by Equation (4.32). In this respect,

it is similar to the axisynmetric mode at large wavenumber. However, it

can be shown that a frequency exists above which real wavenumbers cannot

exist. Extending the terminology adopted previously, let us call this

the upper cutoff frequency, and let us call its associated axial wave-

number the upper cutoff wavenumber. If we denote the upper cutoff fre-

quency of the nth mode order as Qn, then it can be shown that

nphu -1/ 2 + pa (C/cp)2 (4.35)Sn P ns h"

)~- w-w~..
)~.

AX2A-



Above the upper cutoff frequency, the frequency spectra enters the com-

plex &-plane. All of the higher order modes will have an upper cutoff

frequency. The transition region behaves in a manner similar to that of

the axisymmetric mode.

Figure 4.7 shows the frequency spectrum of the n-i mode of the

fluid-loaded real branch for various values of normalized shell thick-

ness. By comparison with Figure 3.15 for the shell in vacuo, fluid-

loading has confined the-first beam mode to the region &2>k2 and moved

it downward with respect to the flexural branch in vacuo. This will be

a characteristic of the frequency spectra at all mode orders.

Figures 4.8-4.10 show the frequency spectra for the real branch

of the n-2, 3, and 10 modes of a water-loaded shell at various values of

normalized shell thickness. As in the in vacuo case, the lower cutoff

frequencies are nonzero for all mode orders greater than one. Denoting

the fluid-loaded, lower cutoff frequencies of mode order n as Qc, they .

can be approximated by

QC- 4 n(n2_1) [in2 + Pa_ n + 1 - 2(2+p)O 2(n2_)2- (4.36)n P 0sh ( 436

The lower cutoff frequencies increase with increasing mode order number,

and as would be expected, the fluid-loaded lower cutoff frequencies are

smaller than their flexural branch counterparts for a shell in vacuo. N

However, unlike the in vacuo case, the axial wavenumber associated with

the lower cutoff frequency is no longer zero, but would be given by 6

=c/C S~ (4.37)n

The behavior of the frequency spectra above the lower cutoff frequency

and wavenumber is relatively independent of axial wavenumber. By com-
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parison with Figures 3.16-3.18, it can be seen that this behavior is

consistent with that of the flexural branch of a shell in vacuo. The

large wavenumber behavior of the higher order modes is similar to the

n-i mode, except that the upper cutoff frequency is smaller for increas-

ing mode order.

Figure 4.11 shows the frequency spectra for the first eleven mode

orders of a steel shell in water. The normalized shell thickness is

0.01. A comparison with the frequency spectra of the flexural branch of

a shell in vacuo, Figure 3.7, highlights the behavior discussed. Also

shown is the real frequency spectra of a fluid-loaded classical plate

calculated as

2-k2 (6&4-1) = L

As an example, see Junger and Feit (1972, pp. 160-62). Figure 4.12

shows the dispersion curves for this same situation. If a comparison is

made with the in vacuo dispersion curves, Figure 3.10, the effect of

fluid loading is to decrease the normalized phase velocity and to limit

the real phase velocity to finite values at low wavenumber. The maximum

real phase velocity would be the acoustic velocity c. The normalized

group velocity is plotted against axial wavenumber for the water-loaded

shell in Figure 4.13. Similar data is presented in Figure 3.13 for the

flexural branch of a shell in vacuo. Similarly fluid loading generally

decreases the normalized group velocity from its in vacuo values. Since

the group velocity represents the velocity at which energy is transport-

ed along the shell, fluid loading is seen to reduce the energy flow and

in that sense acts as an added impedance.

If only the real singularities are considered, the cutoff fre-

quency behavior can be used to limit the infinite Fourier series in the

b U " " "" " m J" U " U w " " U• a. , ' -. . - ,,, ; .,-"...-" "."f -v' , q ,+. -' . w" , ,, ,"F
" '
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solution of the acoustic pressure, Equation (4.21). The axisymmetric

mode with a zero lower cutoff frequency and an infinite upper cutoff

frequency acts as an all-pass filter. At all driving frequencies, the

axisynmetric mode contributes a residue term to the solution. The first

mode order with a finite upper cutoff frequency acts as a low-pass

filter. Since the upper cutoff frequency decreases with increasing mode

order, at frequencies above the upper cutoff frequency of the first mode

order, the residue term would be consist only of the contribution due to

the axisymmetric mode. The second and higher mode orders have both a

nonzero lower cutoff frequency and a finite upper cutoff frequency.

These higher mode orders act as bandpass filters and contribute only for

driving frequencies within the band. Since the lower cutoff frequency

increases with increasing mode order, at frequencies below the lower

cutoff frequency of the second mode order, only the axisymmetric and

first mode order will contribute to the residue term..

The increasing behavior of the lower cutoff frequencies and the

decreas.ng behavior of the upper cutoff frequencies require that a mode

order exists beyond which no real singularities are possible. This

implies that the Fourier summation of the residues of the real singular-

ities has a finite number of terms. Figure 4.14 is a plot of the lower

and upper cutoff frequencies of a water-loaded shell as a function of

mode order. Several values of normalized shell thickness are shown.

The curves were computed by requiring =k in the impedance relations of

te characteristic equation for mode orders greater than zero. The

acoustic radiation impedance was taken as its small argument asymptotic

expansion which is exact at zero argument. The resulting polynomial was

solved for its real roots using Laguerre's method. At any driving

frequency, all mode orders to the left of the curve will contribute a

V
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residue term. It can be shown that the maximum allowable mode order at

which real singularities can exist, denoted as nmax, occurs when n-&-k.

In terms of the parameters of the shell and the fluid, nmax is given as

the truncated integer value of

nmax - (C/cp ) (30)- 1/2 cosT (4.38)

where T is the principal angle calculated from

T Co I .l ( 4.39 )

Since nmax is an integer, a small band of frequency exists at which the

maximum number of modes contribute a residue term. The center frequency

of this band is

max = (c/C) nmax  (4.40)

which represents the maximum allowable lower cutoff frequency and the

minimum allowable upper cutoff frequency for the fluid-loaded shell.

4.8 Location of the Complex Singularities

The complex singularities have been very difficult to locate.

Although analytic techniques are helpful in a global manner, due to the

complexity of the characteristic equation they are inadequate to deter-

mine specific singularities. Analysis can be used to define regions in

which singularities cannot exist, such as on the imaginary axis, or to

define the properties a singularity must possess if it is to exist in a

region. Analytic methods are also useful in determining symmetry

properties that allow the search to be confined to a portion of the two-

dimensional space. However, generally the actual location of the singu-

larities can only be determined by numerical methods.
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Numerical methods can generate ambiguous results whenever the

problem has employed branch lines to assure that all functions are

single-valued in the space of interest. Since all machine algorithms

represent angular measure as modulo 2n, association of a point with a

particular Riemann sheet is not numerically possible without the use of

complicated tracking algorithms. When possible, an easier approach is

to work in a variable space in which the characteristic equation is

represented by a single Riemann sheet. For our problem this would be

the radial wavenumber y. Therefore, the complex roots of the character-

istic equation written in terms of y were located and then transformed

into axial wavenumber. The phase of y makes the association with a

particular Riemann sheet obvious.

A problem conmmon to all numerical search methods is choosing the

proper point or points at which to begin the search. Most search meth-

ods are local methods and require the starting point to be reasonably

close to the zero of the function in order to yield correct results. A

general partitioning of the space of interest often leads to confusing

and erroneous results. A method which eventually had some success was

based upon the postulation that since an infinite system has a continu-

ous wavenumber spectrum, each branch must also be continuous. This is
N

another way of stating that as frequency is varied, a particular vibra-

tory mode decays or grows without discontinuity. A consequence of this

postulation is the expectation that all vibratory modes must have a

response at all frequencies, even though the response may rapidly decay

or be very small. In particular, each branch must touch the zero

frequency plane at exactly one point in the complex y and & domains.

Otherwise, the particular vibratory mode would not remain a single-

valued function of frequency. Frymoyer's calculations for a shell in

Io
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vacuo as well as Stuart's (1972) results for a fluid-loaded plate both

confirm this postulation. Nothing in this discussion precludes singu-

larities of order greater than one or the concept of branch splitting.

At zero frequency, the specific acoustic impedance is identically

zero, and the characteristic equation degenerates into the shell imped-

ance Zsn(&). Ignoring the roots at infinity, the characteristic equa-

tion further degenerates at zero frequency into the shell stifness com-

ponent D sn(). These roots were used as starting values in a numerical

search for complex singularities.

The roots were mapped through the complex plane by iterating upon

frequency. In the appropriate regions, results were verified using the

asymptotic approximations of the specific acoustic impedance given by

Equation (4.25). The resultant polynomials were solved by standard

procedures. Even when a reasonable starting point is known, numerical

problems associated with the search method may prevent a valid numerical

solution in certain parametric regions. A classical example is the

failure of Newton's method in the region where the derivative of the

function under evaluation approaches zero. For this reason, several

search methods must often be employed. The most successful approach was

a generalization of the secant method due to Muller (1956). Instead of

linearly approximating the root based upon two initial approximations,

Muller used three initial approximations and fit a parabola to estimate

the root. Unlike the linear secant method, Muller's generalization will

converge on a complex root even when real initial approximations are

used. In this respect, Muller's method is ideal to study the behavior

of the complex branches in the vicinity of the lower and upper cutoff

frequencies where the real roots enter the complex plane. The specific

implementation of Muller's method used was algorithm ZANLYT of the IMSL

i.
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(1982) library. Like Newton's method, both the linear and parabolic

secant methods can fail in regions where the derivative of the charac-

teristic equation approaches zero. Another method employed was a bisec-

tion method adapted to the complex plane by Dubbelday (1983). Although

this method will always converge to a root, the convergence can be quite

slow compared with Muller's method.

At zero frequency, one nonzero y-root exists in each quadrant for

both the axisymmetric and n=l mode. This root has a large magnitude and

as frequency increases the root initially moves toward the origin and

then asymptotically approaches either the real or negative imaginary

axis as frequency continues to increase depending upon whether the root

is respectively in the upper or lower half-plane. The roots in the

upper half-plane are symmetric about the imaginary axis. Although the

roots in the lower half-plane are not theoretically symmetric, at large

magnitude their behavior is quite similar such that they are also essen-

tially symmetric about the negative imaginary axis.

Each root in the y-plane is represented by two roots on a single

Riemann sheet of the k-domain. The frequency spectra in the top Riemann

sheet of the &-domain associated with the upper half-plane y-roots is

shown in Figure 4.15. These frequency spectra are symmetric about both

the real and imaginary axis of the top Riemann sheet. The branch nomen-

clature convention used for the shell in vacuo is not appropriate in the

fluid-loaded case since all known branches exhibit predominantly radial

motion at large &. Instead let us associate the zero frequency inter-

cept of the fluid-loaded branch to the complex extension of the real in S

vacuo branches at zero frequency. That is, the zero frequency roots of %

the shell stiffness term Dn() are recognized as the complex singulari-

ties of the shell in vacuo as presented by Frymoyer. On this basis the
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frequency spectra of Figure 4.15 can be associated with the in vacuo

longitudinal branch and are therefore designated as branch LI. As also

shown in Figure 4.15, branch L exists for mode orders greater than the

first. By performing a large mode order asymptotic expansion of the

impedance functions, it can be shown that branch L1 exists for all mode

orders. Although coiuelex roots on the bottom Riemann sheet are not of

direct interest and therefore not graphically presented, their behavior

is to asymptotically approach the real t-axis as frequency increases.

For mode orders greater than one, a second root exists in each

quadrant of the y-plane at zero frequency. The upper half-plane roots

represent the zero frequency intercept of the complex extension of the

real branch below the lower cutoff frequency. Since this zero frequency

intercept can also be associated with that of the flexural branch in

vacuo, this branch is designated as L3. The behavior of branch L3 on

the top Riemann sheet below the lower cutoff frequency is shown in

Figure 4.16 for n-2 and 3. Frequency is indicated at various points

along the spectra. As can be seen, the complex singularity remains in

the vicinity of its zero frequency intercept over most of the frE 'lency

range. Like branch L1 , complex branch L3 is symmetric about both the

real and imaginary &-axes. Consequently, at the lower cutoff frequency

the complex extensions in the first and fourth quadrants merge and con-

tinue out along the real axis. Similar behavior occurs for the complex

extensions in the second and third quadrants. The behavior over the

real axis was previously described in Figures 4.6 through 4.14. At the

upper cutoff frequency the branch L3 splits to form the complex exten-

sions shown in Figure 4.17. As frequency increases to infinity the

complex extension of L3 above the upper cutoff frequency asymptotically

approaches the real axis again.
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Chapter 5

CAUCHY'S THEOREM SOLUTION OF THE NEARFIELD ACOUSTIC RADIATION

FROM A HOMOGENEOUS FLUID-LOADED CYLINDRICAL SHELL

5.1 Introduction

This chapter will discuss the Cauchy's theorem and integral for-

mula solution of the acoustic radiation from a point-excited cylindrical 1

shell immersed in a homogeneous fluid medium. In the last chapter, the

radiated acoustic pressure at any point in the fluid was found to be

p(r,e,x) = Pref n n cos(ne) { Gn(&) ej x d& (5.1)
n-0

where

z fn(yr )  H n(yr) 6Z an(y)

Gn(&) - sn(&) + Zfn (Ya) H n(ya) Xsn(&) + zan() (5.2)

Both the radial wavenumber y and the behavior of the specific acoustic

impedance Zfn (rr) were specified by using the Sommerfeld branch lines.

The major difficulty in obtaining a solution of Equation (5.1) is

the evaluation of the inverse Fourier integral. If a numerical integra-

tion is performed along the real axis, real singularities of the inte-

grand will obviously cause severe numerical difficulties. A technique

which is sometimes used to deal with this problem is to add a small

amount of damping to the system in order to move the singularities off

the real axis. However, the value of the numerical integration remains

heavily dependent upon the contribution of the integrand along that por-
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tion of the real axis nearest to the now complex singularity. In this

sense, real singularities usually dominate any numerical integration

process. The value of the integral is also a function of how close the "

integration path comes to a singularity, that is, the amount of damping

added to the system. A technique sometimes employed is to calculate the

value of the integral numerically for several damping values and then

numerically or graphically extrapolate a value for the zero damping

limit. Unfortunately, the results from this method can sometimes be

very dependent upon the damping values chosen.

Numerical integration can also have problems with accumulated

round-off error, with convergence in the truncation of the infinite

integration range, and with mesh size selection. A successful numerical

integration, especially for integrands with the complexity of ours,

usually requires quite a bit of investigation into the behavior of the 'S

integrand as well as attention to computational detail. In the end, S..

numerical integration yields a number, and only by repeated parameter

changes can any of the relationships which govern the radiated acoustic %

pressure field begin to be known. A more informative approach is to

investigate the problem analytically and to utilize numerical integra-

tion only for those portions of the solution which cannot be further

solved by analytic methods. However, along the way, numerical investi-

gation is often a useful adjunct to the analytic methods.

The integral can be evaluated analytically by extension into the

complex &-plane and use of Cauchy's theorem. This method is exact if

all of the singularities can be found and their residue contributions

calculated. Additionally, the contribution of the path of integration

through the complex plane must be found. This chapter will develop the

various parts of the Cauchy theorem solution and discuss their behavior

' -iS
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as a function of the parameters of the problem. Asymptotic techniques

will be employed where appropriate. Both the shell displacement field

and the nearfield acoustic pressure will be calculated.

5.2 Cauchy's Theorem Formulation of the Pressure Field

Cauchy's theorem states that the integral of a function between

any two points iz independent of the path linking those points if the

function remains analytic along the path. If the path is closed then

the integral would be zero. Therefore, the integration along the real

axis in Equation (5.1) could be replaced by another path in the complex

plane along which, hopefully, the function Gn(&) has some simple form

and the integration is more easily performed. Since the integrand func-

tion Gn(M) is known to contain singularities, Cauchy's theorem can only
n4

be used if some multiply connected region is defined that excludes these

singularities.

Unfortunately, along the interior paths necessary to exclude the

singularities, Gn(&) will not be a simple function. However, by intro-

ducing Cauchy's integral formula, which relates the integral of a func-

tion over a closed contour to its value at a point inside that contour,

the integrals over the interior paths can be solved. Formally, it is

given by

-1 G(z) d. (5.3)

G(z 0) (2rj)~ Z z

which is written in its more popular form as

g(z) dz - 2nj E] residue(zm) (5.4)
m

'V

where zm represents the first order singularities of g(z) enclosed by

the contour, and residue(zm) stands for the residue of g(z) evaluated at
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Z-Zm . The residue of a first order singularity is defined as the coef-

-1ficient associated with the term (z-zm) of the Laurent series expan-

sion of g(z) about the singularity zm. The left-hand side of Equation

(5.3) therefore represents the residue of the function G(z)/(z-z o ) at

the singularity z-zo . Green's theorem is a higher order manifestation

of Cauchy's integral formula.

If a very small amount of propagation loss is introduced into the

acoustic medium, then a possible contour of integration in the complex

&-domain is shown in Figure 5.1 where circular contours C1 and C2 exist

at infinite radius. The contour of integration around the branch line

is designated by paths I, r2, r3, r4, and r5. The original path of

interest along the real axis from minus to plus infinity is designated

as path R. The contour shown is valid for x>O and the integrand is

single-valued everywhere. Closure in the lower half-plane for x<O would

yield identical results. By use of both Cauchy's theorem and integral

formula we can write

Gn(&) e j X d& -j + I + j + j + + + f+ fGn()e j &x d

R C1 r1  r2  r3  F 4 r5 C2

- 2tj E residue(&m )  (5.5)

where Gn(&) was previously defined.

Over paths C1 and C2 the magnitude of & is infinite. For H
large, it can be shown that ,.

-5 &Er
limit Gn(E) 0(&- e-)

which implies G () approaches zero uniformly in the limit. If a simple
n ow

translation of axis & k+c is introduced it can also be shown that

111 jj 11, I
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Figure 5.1. Closed contour of integration for x>O on the top
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limt140 Gn() - 0()-

which is applicable to the integration along path F3 . Application of

Jordan's Lemma in these two asymptotic regions indicates that

jGn() ei& X d - f Gn(&) eJ xd&- Gn() e j ' x d& - 0 (5.6)

C1  C2  I3

such that

f Gn(&) e j t x d& 2tj Z residue(&.) - Gn(&) e j x d& (5.7)

R m B

is the desired integral. The integration over the real axis is thus

replaced by an integral evaluation around the branch line, given by

f Gn(&) ej x d& - f + f + f + f Gn( )e j) x d. , (5.8) !

B F1 F2 F4 F5

and by the contribution of the residues of the integrand at the singu-

larities E. located in the upper half-plane of the top Riemann sheet.

5.3 Evaluation of the Branch Line Integrals

While the use of Cauchy's integral formula obviates the numerical

integration along the real axis where the integrand has singularities,

the method does introduce new integrals along the branch lines. On a

modal basis, the total branch line integral consists of the four seg-

ments r', r2, r4, and F5. Let us treat them as pairs such that integral

B ln(r,x) consists of segments F1 and F5 along the imaginary axis, and .

integral B2n(rx) consists of segments r2 and r4 along the real axis

where 0<&<k. The branch integral contributions to the radiated pressure

field would be given by

P
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B2(rex) U)ref C n Bin(r 'x) cos(ne) (5.9a)
n-0

B 2(r,e,x) p ref En B B2n.(rx) cos(ne) (5.9b)
n-0

Recalling that neither imaginary singularities nor real singularities

with a magnitude less than the acoustic wavenumber can exist, then the

integrands of both Bln and B2n must be analytic. Although the branch

line integrals can generally only be solved numerically, their analytic

behavior would justify using Cauchy's theorem over numerical integration

along the real axis if the singularities of the problem were known.

Furthermore, in certain asymptotic limits of interest, an analytic solu-

tion of the branch line integrals exists.

Let us begin be evaluating integral B2n along paths r2 and r

where the axial wavenumber is real. By noting that along segment r2 the V

radial wavenumber has a phase of it and a zero phase along segment r4, as

shown in Figure 5.1, and by introducing the symetry property of the

specific acoustic impedance function, Equation (4.24), integral B2n can

be placed in the form

k

B2n(r,x) - f Gn(&,) e j x d& - J Qn(&.) e j x d& (5.10)
r2+r 4  0

where

Qn Zr & + Zf(ya) - 2Re{Z (a )I[Z Zfn(r) sn * [ Zfn()

and where y has zero phase. For zero structural damping the shell's

spectral mechanical impedance is imaginary and Qn(&) reduces to the form
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Qn(&) -- 2j Im {Gn(&)} (5.11)

The integral B2n is complex at all field points except where the axial

distance is zero and it is imaginary.

Although the solution of branch line integral B2n must generally

be found numerically, an analytic solution is available in the nearfield

at low frequency. In this limiting case, the specific acoustic imped-

ance can be approximated by its small argument limit over the entire

integration path. Furthermore, at low frequency the shell's normalized

stiffness function is only weakly dependent upon the axial wavenumber

and can be approximated by

i for n-0 (512
limit X sn(&) = 21) 2 (n2  1)SD 2  frn0(5.12)
Q40 O(n2- 1 - ( + i) for n>O

Introducing these approximations into Equation (5.10) yields

k

limit B2n(r,x) = An f (k2 - 2)n ej&X d& (5.13a)
940 0
r~a

where
n _ a n  

n + nAn[ 2j am2 ) ]an-- [(r) (a)n n2Xsn 2n

A:) 2 [n2Xsn- 6an]2  (2)

for n>0. The integral has solution

k

I (k2  2 d& x (n.) n+1/2(kx) + J-n+ 1/2 (kx)
0

where J n+/2(kx) is the half-order Bessel function (spherical Bessel

function) and H n+1/2(kx) is the half-order Struve function of realn~l/2
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argument kx. For the axisymnetric mode

limit B (r,x) - Ao e 1 (5.13b)
940 20 jX

r~a

where

A0 -=-jaa &a ln(r/a) - 1

[1 + aa ln(ka)]2

For zero axial distance

k

limit B2n(rx=0) = An f (k2 - &2)n d& for n>O (5.13c)
Q-.0 0
r-+a

where

k _ 2) nd& k2n+l (n!) 2n

() 1.3.5 ...... (2n+l)
0

while

limit B20(r,x=o) = A0k (5.13d)
940
r-a

for the axisymmetric mode. The low frequency solutions represented by

Equations (5.13) would be valid for field points such that kr is small. r

In the numerical evaluation of integral sequences as represented N

by Equation (5.9), two important considerations generally are integrand

convergence along the path and modal convergence of the series. Since

the integration interval of B2n is finite, integrand convergence will

not be of concern. The modal convergence behavior of the series can be

assessed by introducing the large order approximations

\' 0 -% '/f- ' <;,.' . - : : '.:' : ' :: ''€? " . ' x ., . ".' ' -- '
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limit X sn (n2 t2)2 02 (5.14a)

limit zaF( ya 2n
limit Zn(Y) n'a1 2n, j(5.14b)
n-w n-

a I(A n  
ga 2n [an (r) n])

limit Z (yr) - jck - r +n[,a + (5.14c)fnck n Tr) + 2n J j)

where e is the base of the Napierian logarithm taken as 2.718... and

n>eyr/2 has been assumed. At large order, the shell stiffness function

has the same asymptotic behavior as exhibited at high frequency.

Introducing these relations into Equation (5.11) yields

(era)r2n X[(rJn+ ,a [ (rW n

-+

limit = - (
-

)  sn _ ) 2+  n2 4n (5.15)

For fixed axial wavenumber, d'Alembert's ratio test would yield

limit + limit O(n2 ) - 0.

Therefore, for large n, the integrand function Qn+l(&)<Qn(.) for all &<k

and the Fourier series is uniformly convergent.

The numerical algorithms used to generate Bessel functions are

based upon recurrence and asymptotic relationships that are numerically

correct only within parametric regions of argument and order. Although

limitations are sometimes due to the algorithm itself, often problems

arise from machine limitations on precision or exponent range. In order
to avoid the numerical difficulties associated with these limitations, U-

it is generally preferable to perform the Fourier series summation

within the integral. Since Qn is both continuous (since it is analytic) -

"L4' to" avoid 
th nume ica 

dif icu 
tie as o ia 

e wit thes limitations, . . .. . ,-. -
. . .
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and uniformly convergent, Bromwitch (1959) has shown that

k

B2 (r,,x) p Pref C en cos(ne) f Qn() e j x d&

00
(5.16)

k

Pref jQ(r,e,E) ei& d&

0

where

N
Q(r,e,E) = €n c n(&) cos(ne) = en Qn(&) cos(ne)

n-0 n-0

Figure 5.2 shows a numerical evaluation of the modal truncation value N

as a function of axial wavenumber for r=a and 9-0 at 2=1, 10, and 100.

The numerical data is compared with an estimate N=ya+10 based upon

uniform convergence criteria. The numerical data represents the mode

order at which the last five mode orders each contributed less than 0.2%

to the modal sum.

Generally both the acoustical farfield and the region close to

the cylindrical shell are of interest while the intermediate region has

little practical application. The farfield is logically defined in

terms of acoustical wavelength as is done in specifying the Fraunhofer

(a/r<<l and ka2/r<<l) or Fresnel (kr>>l) zones. However, the practical

scale of importance for the region close to the cylindrical shell is the

cylinder outer radius a. Although the theory developed has been for an

infinitely long cylinder, real structures are generally on the order of

10 cylindrical radii or less in length. Also sensing equipment and

decoupling treatments are usually located within one cylindrical radius

from the surface. Therefore, the region a<r<2a and x<10a will serve as

a practical definition of the nearfield.

%4



141

41-
7--

00

•0

Q06 o

U LLI

< w- p

- . o- o-
0

.14

-I1

m w

N IGO 33N3 I:]A OOR!

~ 0 w0

0 41

0 
I

.- 40
Eu-

.~ c!x

________N 3(30n1 QOA30N3983ANOD 6 .



142

Figure 5.3 shows the contribution of branch integral B2 (r,e-0,x)

to the nearfield acoustic pressure for 2-0.1 in the plane 9-0 using the

analytic relations (5.13). The prediction is presented as contours of

the pressure amplitude in dB referenced to pref plotted in one dB incre-

ments. This figure is compared to Figure 5.4 which was computed numeri-

cally using Fquation (5.9). The agreement is rather good. Figures 5.5

through 5.7 show results for Q-1, 10, and 100 but where a 10 dB contour

increment has been used. Note that a coincidence effect is apparent in

the high frequency results. For the nominal parameters used in this S

study, the normalized plate coincidence frequency is 28.36. Therefore

for 9-100 a coincidence angle would be expected at

c=sin - c =320
c

from the normal to the plate (or cylinder) surface. Figure 5.8 expands

the 9-100 results out to a radial distance of 10a using equal scaling

factors along the r and x axes. A beaming effect is clearly shown at

the coincidence angle.

The integral Bln can be evaluated in a manner similar to integral

B2n. Again referring to Figure 5.1, we see that along segment r1 arg(y)

is n while along segment r5 the radial wavenumber has zero phase. Also

noting that along paths r1 and r the axial wavenumber is imaginary, we

can write

Bln(r,x) - f Gn(U e j~ x d& f Qn(j&) e - x d& (5.17)

rI+r5  0

where the radial wavenumber has zero phase and the symmetry properties

of Equation (4.24) have again been used. The integrand function Qn(j&)

.?.

1
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Figure 5.8. Constant magnitude contours of B (r,E)0 0O,x) in
the acoustic nearfield calculated using Equation (5.10) and
expressed in dB re p for Q-100 with radial distance
expanded to 10a. Thie61ate coincidence angle occurs at 320
from the normal.
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is defined as

Qn(j) - -2 Im {Gn(j&)] (5.18)

where Equation (5.11) can be used to define ImfGn(j&)) using the

interpretation

y k 2+ e2 (5.19)

Unlike integral B2n' integral Bln will be real at all field points.

Modal convergence of the integrand function Qn(j&) can be demon-

strated in a manner similar to Qn(k) except where the radial wavenumber

now has the form of Equation (5.19). D'Alembert's ratio test would

again yield

limit limit O(n-2 ) 0
n-*w I (J&) nm

and the Fourier series is again uniformly convergent at large mode

order. As before, we can write

B1 (r,,x) = pref n n cos(ne) { Qn(j&) e - ' x d&
n 0 0

.P ref J Q(r,E),j&) e - F'x d& (5.20)

0

Figure 5.9 shows a numerical evaluation of the convergence mode N as a

function of axial wavenumber for r=a and G-0 at Q=, 10, and 100. Again

the numerical data is compared with the estimate N-ya+10. Due to the

form of the radial wavenumber, it is expected that N would increase with

increasing axial wavenumber, as is shown.



150

0• S
CN

-4

t~o
0

ow

inf

-l >

II 0 I I I I i l l fil I I I I I I - 1[ I

CcC

(0

N 3OLN 3N39WANC)

-1oC

00

00

LLLIL I I I11 I I

N 3GOA 3N398ANOOJ



151 9

Since the integration interval is semi-infinite, the requirement

to consider more and more modal contributions as the integration vari-

able increases would normally lead to an untenable numerical situation.

Fortunately, the integrand converges well before modal convergence is a

serious issue. Since modal convergence occurs when the argument ra is

approximately equal to the order n, for large axial wavenumber where &>k

and &>k

Z sn(J) - 0(&4

Zan(y) O(-Y i & /3)< T2/3

such that

at all field points. Convergence will be faster for lower frequency, K
larger axial distance, or greater radial distance.

As before, integral Bln can generally only be solved numerically.

However, if the axial distance is large, an analytic solution is possi-

ble based upon Laplace's method. This method states that if the inte-

grand function Qn(j&. is reasonably well behaved and analytic at the

origin, as x increases the largest contribution to the integral will"a-...

come from the vicinity of the origin due to the strength of the decaying

exponential term. The integral can therefore be approximated by its 9

behavior near the origin. Examination of Q n(j&) indicates that, except

at low frequency, it is a smoothly varying function near the origin with

a small (or zero) slope. By expanding Qn (j&) into a Taylor series about 0

S"".
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0it is found that

x-1j (o) + XQ(O) + x_2 (oO) + (5.21)

Since both y and ZSn are even functions of the axial wavenumber, all of

the odd ordered derivatives of On are identically zero when evaluated at

zero, yielding!' 1 iv• ]

For large x and smoothly varying Q n(j&), this series can be truncated

after the first term, yielding

limit Bln(r,x) (

where y can be replaced by the acoustic wavenumber k in the evalution of

the integrand function. For additional discussion of the method, refer-

ence is made to Carrier, Krook, and Pearson.

Figures 5.10 through 5.13 show a nearfield evaluation of branch

integral B1 (r,9-0,x) in the plane 8-0 for Q - 0.1, 1, 10, and 100 using

a numerical evaluation of relation (5.20). As was done with integral

B2 , the predictions are presented as contours of pressure amplitude in

dB referenced to pref in 10 dB increments. Also shown by dashed lines

in Figures 5.11 through 5.13 is a prediction based upon the analytic

solution at large axial distance given by Equation (5.22). The analytic

solution is a good approximation for x>a except at low frequency.

- 1ii~f*.
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5.4 Residue Contribution of the Real Singularities

As was mentioned earlier, the residue of a first order singular-

ity is the coefficient of the negative first power term in the Laurent

expansion of the integrand about the singularity. For an integrand that

is the quotient of two functions, such as Equation (5.2), Hayek (1980)

gives the residue about the singularity & 0 as

residue(& Zfn(r) e evaluated at 0 O  (5.23)3 T [ Zsn(&) + Zfn(Ya) I

This relation assumes that the singularity is of order one such that the

denominator is nonzero.

Evaluation of the residues of both the positive and negative

valued pair of real singularities can be performed by considering the

Cauchy Principal Value of the inteqral alcng the real path R. In order

to assure that the formulation represents a progressive wave solution

the indentation about the negative valued singularity must lie above the

real axis while the indentation about the positive real singularity must

lie below the real axis. For further details see Skudrzyk (1971, pp

46-48, 651-56). Only the positive valued singularity would be included

within the closed contour of integration and would therefore contribute

to the solution. Alternatively, a small amount of structural damping

could be included that would cause the singularities to rotate slightly

in a counter-clockwise manner. Since the pc-itive valued singularity

would move into the first quadrrnt of the complex &-plane, and the neg-

ative valued singularity would m-' into the third quadrant, again only

the positive valued singularity would be enclosed by the closed contour

of integration and would consequently have a residue contribution. In

the limit as the damping goes to zero both methods would yield the same
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result. Therefore, at most a single residue contribution due to real

singularities exists at a given mode order, where the total contribution

to the pressure field is given by

N
Res(r,e,x) - Pref L en Rn(rx) cos(ne) (5.24)

The infinite Fourier series has been truncated due to the cutoff fre-

quency behavior discussed in Section 4.7 and shown in Figure 4.14. The

modal contribution can be written as

R (r,x) - Kn(yr) 2rj Xsn(&) e x  (5.25)
n K n(Ya) a 2  

2 aAK~ya + 1 Xsn() - s -

evaluated at &-&o" In the derivation of this equation, the relation

Zs(&) - -Zf(Ya) at &-& which defines the singularities has been used.

Since 0A>k, the radial wavenumber is now taken as a magnitude, or

Y _&V2 2.

and the alternative forms of the specific acoustic impedance given by

Equation (4.28) have been introduced.

Since the modified Bessel function of the second kind is a mono-

tonically decreasing function, the residue of a real singularity will

represent a wave propagating in the axial direction and decaying in the

radial direction. This decay will be very rapid for all modes except

the axisymetric and can be approximated by

F ei (ra large y for all n

0 n

R - small y for n>O.

! 4'4
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This second relation would be true for r<Y - , beyond which the decay

would become even more rapid. For the axisymmetric mode the radial

decay is on the order of

in r smallyR0  1 On y )I

which is very slow except in the farfield. In general, the axisymmetric

mode would be expected to dominate the residue contribution of the real

singularities in the farfield.

The behavior of Res(r,E=0,x) in the nearfield is shown by Figures

5.14 through 5.17 as contours of constant magnitude in dB referenced to

Pref for normalized frequency of 0.1, 1, 10, and 100. The radial decay

discussed is shown. At frequencies above the plate coincidence frequen-

cy, the real residue contribution takes the form of axial standing waves

that add little to the acoustic field.

5.5 Residue Contribution of the Complex Singularities

Of all of the complex singularities whi, ; exist, only those above

the real axis on the top Riemann sheet are of interest. As was shown in

the last chapter, complex singularities must exist as a pair symmetric

about the imaginary axis. For a complex singularity in the first quad-

rant of the complex &-plane denoted by

= r+ j&i

such that

Y i = 'r + Jyi

the residue wculd be given by Equation (5.23). If the symmetric singu-

larity in the second quadrant

V%
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is also considered, it can be shown that

residue(& 2) --residue (&1 )

such that the sum of the pair is

residue( 1 ) + residue(&2) 2j Im{residue(l)}

The sum of the symmetric pair of complex singularities would yield an

imaginary result.

On a modal basis, the pair would have a contribution

Hn(Yr) Xsn(&) e j~

C n(r,x) f 4n Im 2 Xn (5.26)
Hn(ya) a& n 2a

n .(_ I X(&)- X(~2n 2  sn sn 2

evaluated at m- I where n/2<arg(y)<n.

Since the residue contribution is proportional to exp(- ix), com-

plex singularities will represent waves that decay axially . At either

large radial distance or radial wavenumber, Cn will also be proportional

to exp(-vir) and exhibit strong radial decay. As an example, the com-

plex branch denoted as L1 discussed in section 4.8 would exhibit this

behavior. Complex singularities will contribute little to the solution

if the axial distance, radial distance, &i, or yi are not all small. In

general, one or more of these conditions can be expected to exist except

at frequencies just below the lower cutoff frequency and field points

very close to the point of excitation. Therefore, the contribution of

the complex singularities will be ignored.
I

,, , * or I- I ' r r. W. , r. .-.
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5.6 Nearfield Acoustic Pressure

Examination of the previous results reveals that for frequencies

below the plate coincidence frequency the magnitude of the real residue

contribution dominates the branch line integral contributions by at

least 15 dB at all field points shown. This result is also valid for

nonzero 8. Therefore, in this region the acoustic pressure can be

approximated by

N
p(r,9,x) - Res(r,8,x) = pref _ £n Rn(rx) cos(n8) (5.27)

n-0

where the much more complicated expression given by Equation (5.1) has

been replaced by a finite series. Therefore, Figures 5.14 through 5.16

also represent the nearfield pressure. As can be seen, the pressure

magnitude maintains a value within 20 dB of the driving-point pressure 0'

over most of the acoustic nearfield.

At frequencies above the plate coincidence frequency the near-

field pressure is dominated by the branch line integrals, primarily B2..

Figure 5.18 shows the acoustic nearfield pressure calculated at a nor-

malized frequency of 100. The coincidence angle effect and the overall

character are similar to the results shown in Figure 5.7 for B2. Note

that except for the coincidence beam region, the magnitude of the near-

field pressure is at least 30 dB down from the driving-point value.

The surface pressure field is also of interest. Figures 5.19

through 5.22 show the pressure at r-a for Q-0.1, 1, 10, and 100. The

circumferential coordinate ranges from zero to a and the pressure field

is symmetric about the e-0 plane. Although not shown, the real residue

contribution dominates the surface pressure field at frequencies below

the plate coincidence frequency while the branch line integrals, again

S"..
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primarily B2, dominate the field at higher frequencies. For frequencies271

below the plate coincidence frequency the surface pressure field main-

tains a magnitude within 20 dB of the driving-point value over most of

the cylinder surface. At higher frequencies the surface pressure field

is similar to that for a point-excited plate.

5.7 The Fluid-Loaded Displacement Field

The cylindrical shell's radial displacement is given in terms of I''

integral relation (4.20). The form is very similar to that of the

acoustic pressure and it can be solved by similar techniques. For

+A.

w(e,x) = Wref e n cos(ne) gn( ej x d (5.28)
n-0

where

Zn( ) + Zfn(ra) Xs(&) + 6Zan(Y)

Cauchy's theorem can again be employed to solve the integral, yielding

w(E,x) - res(e,x) - bl(e,x) - b2 (8,x) (5.29) 6

The contribution over paths r3, CI , and C2 is again zero by application

of Jordon's Lenma.

The contribution over branch paths r2 and F4 is now written as ('

2 4.

k

b2(9,x) - w ref L £n cos(ne) J &)e d (5.30)
n-0 0

where

pn ) = J c Ph Zfn(Ya) + Zfn(Ya)
q 2 Z&(E) -f(a)  Z f(Ya)_ Zn(ya) 2Zsn([ +sn()Znfnn

e.-
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and where the radial wavenumber has zero phase. For zero structural

damping qn(&) reduces to

qn(&) = -2j Imfgn(&) }

An analytic solution exists at low frequency that follows the develop-

ment of Equations (5.12) and (5.13), but where now the constants are

specified to be

A &an

[1 + &a ln(ka)]2

4eiani a 2n

AW - (n) 2 (nX sn- Aa) 2 (2)

for n>O. Similarly, the contribution over branch paths r1 and r5 can be

designated as

b1(ex) Wref en cos(ne) qn(j&) e- x d& (5.31)
0

where for an undamped cylindrical shell

q n(j&)= -2 Imfgn(j&)}

with the interpretation

As before, an analytic solution of the integral exists at large axial

distance based upon Laplace's method which yields

FNqn(j ) e-L d=x qn(0 )  %

0

at large axial distance.
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The real residue contribution to the fluid-loaded radial dis-

placement field is given by

N
res(e,x) - Wref > n rn(x) cos(ne) (5.32)

n-0

where the modal residue term

rn(x) - -2je (5.33)

nn 2f- 2 + 1 sn ( &) -Xsn(&) AP-
Y

is evaluated at the real residue. Again the radial wavenumber has been

implicitly specified as the magnitude

Y = &2 -k 2

in the region &o>k. As was done with the acoustic pressure solution,

the contribution due to complex singularities is considered small and is

ignored in the radial displacement solution.

The normalized cylinder displacement field for driving frequen-

cies of 0.1, 1, 10, and 100 is shown in Figures 5.23 through 5.26. As

would be expected, they display similar behavior to the surface pressure

field. Although the individual contributions due to the branch line

integrals and real residues are not presented, again the residues dom-

inate the solution below coincidence frequency while the branch line

integral b2 dominates the solution at higher frequency.
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Chapter 6

SUMMARY AND CONCLUSIONS

The acoustic nearfield of a cylindrical shell of infinite axial

extent has been examined. The elastic shell is loaded externally by a

fluid medium and internally by an applied harmonic point force acting in

the radial direction. This model is a useful approximation of finite

length structures commonly found in the ocean and for which analytic

solutions are not available. The acoustical and structural behavior of

this simple geometry can provide insight into the mechanisms by which

energy is transported and the parameters that control these mechanisms.

A practical problem of interest might be the characterization of the

self-noise of an acoustic sensor system that is mounted in the vicinity

of an elastic structure which is being mechanically excited by internal

equipment. Green's function techniques could be used to extend the

results to include any type of distributed mechanical or nonharmonic

loading.

The surface force exerted by water can be comparable to the iner-

tial and damping forces found in a vibrating structure. Consequently

fluid loading can alter the structural response of the elastic shell

from its in vacuo state. The problem is a classical boundary value

problem where boundary conditions at the shell-medium interface and in

the farfield can be used to couple the elastic and acoustic response of

the system. Several methods of approach have been discussed in the

Introduction. The geometry of the problem suggested the use of cylin-

drical coordinates since the boundary surface of the cylinder would rep-
: S.
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resent a constant coordinate surface. An integral transform technique

was chosen to reduce the governing set of differential equations of
S

motion into a set of algebraic equations in an axial wavenumber space.

Eigenfunction analysis was used to express the acoustic pressure and

surface displacement fields in terms of a Fourier series of modal con-

tributions over a discrete circumferential wavenumber spectra. The main

effort became the solution of the inverse Fourier integral and the con-

vergence behavior of the modal sum. various investigators have used

asymptotic methods to calculate the farfield and high frequency solu-

tions. Since the primary interest of this study has been the nearfield

at frequencies below the classical plate coincidence frequency, Cauchy's

theorem was chosen to solve the inverse Fourier integral. As was demon-

strated in the last chapter, the nearfield solution can be written in

terms of a finite sum of residue contributions from real singularities.

The contribution of the elastic cylinder to the fluid-loaded 0

problem was written in terms of a spectral modal mechanical impedance.

The Flugge equations were chosen to represent the shell because they

represent a thin shell theory that is also conservative. This was shown

by their development using variational energy methods in the Appendix.

Differences were discussed between thin shell theories, thick shell

theories that account for shear deformation and rotary inertia, and

elastic theories based upon the equations of elasticity. A comparison

between the Flugge theory and an elastic theory due to Gazis indicates

that the Flugge theory is an adequate representation of the shell's in

vacuo middle-surface deformation for frequencies up to several times the

plate coincidence frequency. At higher frequency, either a thick shell

or thick plate theory would be more appropriate. If fluid loading is

included, Flugge theory would be expected to give reasonable results to

An.
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higher frequency than expected for the in vacuo problem since the shell

impedance would represent only a portion of the characteristic equation.

The in vacuo modes of vibration were investigated and shown to

consist of three orthogonal branches that represent coupled motion of

the middle-surface deformation of the shell. Since the eigenvalues, or

singularities of the inverse Fourier integral, control the surface

deformation and acoustic field at low frequency when fluid loading is

negligible, their values and behavior were calculated and discussed.

Although neither the longitudinal nor torsional branches are sensitive

to shell thickness, the flexural branch which has a large radial deform-

ation component was found to be highly sensitive. Therefore, for negli-

gible fluid loading, both the radial displacement field and the acoustic

field would be expected to be sensitive to shell thickness. At high

frequency, the in vacuo branches were shown to behave like simpler

systems such as plates and circular bars. The addition of fluid loading

restricts the free modes of vibration to at most a single mode for each

circumferential mode order. This fluid-loaded branch is a modified ver-

sion of the in vacuo flexural branch and therefore its frequency spectra

is also sensitive to shell thickness.

For in vacuo free vibration, at each circumferential mode order a

cutoff frequency was shown to exist that represents the transition be-

tween axially propagating and nonpropagating waves. At the cutoff fre-

quency the phase velocity is infinite while the group velocity is zero,

thus indicating that at lower frequency energy cannot propagate axially.

A zero cutoff frequency was shown to represent rigid body motion. As

shown in Figure 3.1, the cutoff frequency is higher for increasing mode

order. At low frequency the displacement and acoustic fields will be
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influenced by only a small number of modes while at high frequency a 8 I
large number of modes would contribute.

The addition of fluid loading increases these cutoff frequencies

and introduces a second, higher cutoff frequency. At frequencies above

this upper cutoff frequency, axially propagating waves cannot exist.

Consequently, each circumferential mode order has an associated free

mode of vibration only over a limited frequency bandwidth in the fluid-

loaded case. As was shown in Figure 4.14, for mode orders above some

critical mode order, axially propagating waves are no longer possible at

any frequency. Unlike the in vacuo case, at high frequency the number

of mode orders at which free waves are possible decreases. As expected,

the fluid-loaded cutoff frequencies are sensitive to shell thickness

with thinner shells contributing more circumferential modes to the

shell's displacement and acoustic fields than do thicker shells.

The in vacuo frequency spectra, dispersion curves, and group

velocity behavior are extensively presented in Chapter 3. At frequen- ,4

cies above the ring frequency, the longitudinal branch of a cylindrical

shell looks much like the longitudinal branch of a plate or bar at all

mode orders. Similarly, the torsional and flexural branches of a cylin-

drical shell behave like the torsional branch of a bar or the flexural

branch of a classical plate above the ring frequency. At frequencies

below the plate coincidence frequency, the classical plate theory and

Timoshenko-Mindlin plate theory yield similar results. Below the ring

frequency, both the axisymmetric and first beam mode of the flexural

branch can be modeled by membrane theory. Above the ring frequency and

at higher mode orders at all frequencies, bending effects dominate the

frequency spectra of the flexural branch.

11II
A lul
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The addition of fluid loading and the spectral formulation of the

acoustic pressure field were discussed in Chapter 4. Both physical and

mathematical reasons were given for the choice of the Sommerfeld branch

lines to specify the radial wavenumber as a single-valued function in

the region of interest. The behavior of the normalized spectral modal

acoustic radiation impedance Zan (y) was shown by Figures 4.3-4.5 to con-

sist of two characteristic regions. In one of these regions the func-

tion is monotonic, possesses no poles, and is zero only at infinity. In

the other region, the function contains an infinite number of alternat-

ing poles and zeroes, although it is also zero at infinity. The spec-

tral modal specific acoustic impedance Zfn (rr) has a similar behavior

except that it becomes infinite in this second region at infinite range.

The Sommerfeld branch lines are the boundary between these two regions.

Existence properties of the singularities were derived. Since

the characteristic equation with fluid loading is Hermitian only for

RI1>k on the top Riemann sheet, then the real branch must be confined to

this region. Furthermore, real singularities cannot exist at all on the

bottom Riemann sheet and imaginary singularities cannot exist anywhere.

This means that singularities cannot exi st on the Sommerfeld branch

lines. Consequently, the transformed displacement or pressure integrand

would be analytic on a contour of integration along the Sommerfeld

branch lines. On the top Riemann sheet, singularities were shown to

exist in sets that are symmetric about both the real and imaginary axes.

Two real singularities would comprise a set while a set of complex sing-

ularities would consist of four. Consequently, any one quadrant of the

complex axial wavenumber domain would yield the location of all of the

singularities. On the bottom Riemann sheet, singularities are only con-

jugate symmetric about the imaginary axis, and. therefore two quadrants
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of the axial wavenumber domain would be required to find the location of

all the singularities.

Fluid loading was shown to reduce the number of real branches %

from three to one. This single real branch can be associated with the

in vacuo flexural branch, except it must exist only between the lower

and upper cutoff frequencies and at a higher axial wavenumber than the

in vacuo flexural branch. At each cutoff frequency, the real flexural

branch splits into two complex branches with a behavior described by .

Figures 4.16 and 4.17. The counterpart of the in vacuo longitudinal

branch is a complex branch that is characterized by having a large

radial wavenumber as shown in Figure 4.15. No counterpart of the in

vacuo torsional branch has been found.

The behavior of the fluid-loaded real branch was discussed and

compared to the in vacuo flexural branch. Expressions were developed

that characterize its behavior over various regions of interest and

specify the cutoff frequencies. It was shown that at -i cutoff frequency

fluid loading decreases the phase velocity from the in vacuo value and ,-

limits it to finite values. The maximium fluid- loaded phase velocity at

any frequency is the acoustic velocity. Similarly, fluid loading also i.

decreases the group velocity over its in vacuo values. This can be

interpreted as decreasing the rate at which energy is transported along

the cylinder which would be expected when an additional impedance is

added to a system.

Cauchy's theorem and integral formula were used to evaluate both

the radial displacement of the shell and the acoustic nearfield. The

solution was shown to consist of two branch line integrals and the resi-

due contribution from the real and complex singularities. The residue

from each symmetric paii of complex singularities enclosed by the con-

iK
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tour of integration was shown to decay both axially and radially such

that its contribution to the solution could be ignored except very near

the excitation point. For frequencies below the plate coincidence fre-

quency, the nearfield contribution of the branch line integrals was

found to be at least 15 dB below the contribution from the residue of

the real singularity. Consequently the shell radial displacement and

nearfield pressure can be written as a finite sum of residue contribu-

tions. Since the real singularities are not dependent upon field point,

a finite set will serve to calculate the field at any desired r, B, or x

resolution desired. This is seen as a considerable computational advan-

tage over performing a separate numerical integration of the original

inverse Fourier integral at each field point. Above the plate coinci-

dence frequency, the solution entirely consists of the branch line inte-

grals. The well known high frequency acoustic beaming effect that oc-

curs at the coincidence angle was shown to be due to branch integral B2. #
The characteristics of the branch line integrals and the residues

were also discussed in Chapter 5. The modal contributions to both B2
and B1 were shown to be uniformly convergent with a mode convergence

approximately equal to ya+lO. Since the convergence behavior is primar-

ily due to the denominator terms of the modal contributions, modal con-

vergence is only weakly dependent upon radial distance. An analytic

solution, Equation (5.24), was derived for branch line integral B1 using

Laplace's method. Comparison with numerically generated data indicates N

that Equation (5.24) is a good approximation whenever x>a. For each

mode order, the residue of the real singularity was shown to represent a

wave that propagates axially and decays radially. Above the plate coin-

cidence frequency, the total residue contribution behaves like an axial

standing wave that contributes little to the solution.



185

Calculations of the acoustic nearfield were presented for 8-0 in

Figures 5.14-5.16 with 2-0.1, 1, and 10 and in Figure 5.18 with 9-100.

The nearfield was defined based upon practical size considerations of

typical structures rather than on the basis of acoustic wavelength.

Since most structures of interest have a length-to-radius ratio of about

ten and sensing equipment is generally found within one radius of the

structure or else in the farfield, then a reasonable definition of the

nearfield would be x<10a and a<r<2a. Below the plate coincidence fre-

quency, good coupling between the drive point pressure and the acoustic

nearfield is seen to exist. This indicates that structural vibration

could be an important component of the self noise of a sonar array at

these frequencies. If the reciprocal problem of an acoustic point

source near an elastic cylindrical shell is considered, these results

indicate that large amounts of acoustic energy would couple into the

structu.-e and thus decrease the power radiated directly into the far-

field. Above the plate coincidence frequency, the acoustic field is

similar to that of a point-excited plate and poor coupling is observed

between the drive point pressure and most of the acoustic nearfield.

Both the surface pressure field and the shell radial displacement field

were calculated for 9-0.1, 1, 10, and 100. As expected, they display

similar behavior. Again strong coupling between the drive point and

points within 10a of the drive point is seen for frequencies below the

plate coincidence frequency. Above this frequency, the response is

confined close to the drive point and resembles the response of a point-

excited plate.
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APPENDIX

DERIVATION OF THE FLUGGE SHELL EQUATIONS

BY APPLICATION OF HAMILTON'S VARIATIONAL PRINCIPLE

For a conservative mechanical system, Hamilton's variational

principle states that the motion of the system from time t1 to time t2

is such that the line integral

t2
J - j L dt (A.1)

t1

has a stationary value for the correct path of motion. The functional L

is the Lagrange functional, which represents the difference between the

kinetic and potential energies of the system at any instant. Of all the

possible paths by which the system could move, it will actually follow

the path by which the value of J is either a minimum, a maximum, or an

inflection point. That is, the path will be such that the derivative of

J with respect to some variable will be zero. In terms of variational

calculus, Hamilton's principle can be written as

6J - 6f L dt - 0 (A.2)

tl1

where 6 stands for "the variation of" and will be defined later. This

principle is a manifestation of the impulse-momentum theorem, and

application of the principle results in equations commonly called the
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Lagrange-Euler, or simply, the Euler equations. They represent the

governing equations of motion for the system. They can also be indepen-

dently developed by using D'Alembert's principle, which is based upon

the consideration of small virtual displacements from some instantaneous

state. The Lagrange functional L has been shown by Weinstock (1974) to

yield the conservation of energy law E-T+V when introduced into the

Euler equations. General reference is made to Weinstock, Morse and

Feshbach (1953), Goldstein (1981), and Sechler (1968) for material

developed in this appendix.

Development of Hamilton's principle for a general problem can be

very concise, as in the case of Morse and Feshbach's treatment, but at

the possible sacrifice of clarity. On the other hand, a more informa-

tive approach by examples, such as that presented by Weinstock, can

become very lengthy. Here, we will try to strike a middle ground by

developing the method based upon the kinetic energy term of the Lagrange 0

functional and then by developing the potential energy term in a more

concise manner with emphasis only upon points not adequately discussed

in the initial development. In general, we will be dealing with energy

densities, such that

t v tlS

is the integral to be made stationa.y, and LV is the Lagrange volume

density. Since the radial dependence of the problem is known, the prob-

lem can be reduced to a three-dimensional one in x, e, and t by calcu-

lating the Lagrange surface density Ls=Ts-Vs and the elemental volume

dV-rR 3 do dx dG. The variable p represents a radial coordinate measured

from the shell's middle surface that is related to the radial coordinate

W - ,! . n o ' ll, - , r 1

Ok .U -L -or
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r by r-l+P. The R3 factor is due to the normalization of r, p, and x

with respect to the middle-surface radius of the shell.

The instantaneous kinetic energy per unit volume at any point in

the shell is given by

1 u' 2 (au ~ 2 (a )~21

T+ (at- (A.4)

In terms of the middle surface deformations, Equations (2.5), this is

1PR2 F.2 +r2.2 +*2 - o -2p V +S2 2' (.5TV 2, x ,9 Wx

where the dot notation represents differentiation with respect to time,

and the differentiation notion

y L and 2 Yx ~
Y,x ax , d ex

has been introduced. Since u, v, and w are functions of x, 9, and t

only, the radial dependence of TV is known, and the surface kinetic

density can easily be calculated.

h/2 h/2

TS  J j TV r dp - R (1+p) TV dp

-h/2 -h/2

1 3 [.2 .2 .2 *2 +~ *2 + 21
s 2 R L + v + w + 0(3v -4w 6  Pwe - 2uw' + wx) (A.6)

where the normalized thickness ratio 0 - h2/12 has been introduced.

If the potential energy of the system was zero, then the problem

would be to find u, v, and w for which

t2

J R2  f Ls dS dt (A.7)

tis
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is stationary. Let us now introduce some comparision functions u v *

and w which are close to the exact solutions and are defined by

u (x,O,t,) - u(x,e,t) + a &(x,e,t)

v (x,e,t,) - v(x,e,t) + a n(x,e,t) (A.8)

w (x,e,t,&) - w(x,e,t) + X C(x,9,t)

where o is a small non-dimensional constant. The perturbation functions

, , and are restricted only in that they must be at least twice "

differentiable in any variable x, e, or t, and they must be zero at all

boundaries (including t1 and t2 ). This last condition assures that the

boundary conditions yield the exact solutions. If we introduce the

comparison functions into Equation (A.7) and group terms according to

powers of the arbitrarily small constant a, we yield a new integral

+a 1 2I1 + a J2 A9

where

t 2

1i P s J JJ [(u - OW'.)& + (v + 3v - 21w,e), + w

tis

+ w - 2) , + 0(w - ) dS dt (A.10)

is defined as the first variation integral, and

t2

i P R I[k2+ (1+30) f2 + - 4 0 *j') 2

tlS

+ _ 20 &C d dt (A.11)
X x
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is called the second variational integral. Since a is an arbitrarily

small constant, this last term can be disgarded, and for a stationary

condition

-J= Jl - 0 (A.12)

must be true, since the limits of integration are constant with respect

to o. This process serves to define the meaning of the variation of J.

The first variational integral contains terms of the form

t2  t2  t2 .

f(xet) dt - f f dt (A.13)

t1 tI  tI

when integrated by parts. Since &(t 2 )=&(tl)-0 was a requirement on 6,

the first term vanishes, leaving only the second term. Other terms

containing mixed derivatives also exist in the integrand of the form

t2  2n 2n t2 t2 .2 n

,Jf(x,e,t)t d9 dt - f [ - C1 + fJ ' C de dt (A.14)

tI 0 0 tI  tI 0

after twice integrating by parts. Continuity of the solution in the

circumferential direction (or a free boundary condition in the axial

direction for derivatives with respect to x) eliminates the first term

on the right hand side, while the requirement C(t 1 )- (t 2 )-0 eliminates

the second term, again leaving only the last term. The constant terms

which result from integration by parts that are not eliminated due to

forced constraints and continuity conditions will form the natural

boundary conditions of the system. Following this process the first

variational integral becomes
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tS
t1 S 

1

+ O(U ,x + 2 V,e - (4,ee - Q4,xx )C ] dS dt (A.15)

For the stationary condition to apply, J1 must be zero. It is argued

and proven by Weinstock that for arbitrary functions &, ri, and C, the

only way J1 can be zero is if the functional coefficients of &, 0, and C

are identically zero for all values of x, 8, and t within the range of

integration. This would yield a set of three differential equations

governing the behavior of the shell (if potential energy was neglected).

Examining the variation of the kinetic energy ST, we find many

terms which are proportional to 8. These terms are related to rotary

inertia and are generally small except at high frequency. In keeping

with our earlier assumptions concerning zero-thickness shear strain,

which reduced the theory to a zero-order theory, this contribution will

be assumed negligible, leaving

t2

ST - - p shR5 j' {{ (U&E + Vrn + WC) dS dt. (A.16)
tlS

t 1 S

Natural boundary conditions were not imposed deriving Equation (A-15).

Before considering the potential energy some conmments are in

order. Relation (A.9) gives the appearance of a Taylor's series expan-

sion about the exact solution in which the first variational integral JI

acts as a first derivative, J2 acts as a second derivative, and higher
N,.

order derivatives are zero. This is the approach presented by Morse and
FFeshbach. When forming the Taylor's series expansion, it must be remem-
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bered that Ls is, in this case, a function not of u, v, and w, but of

the functions u v w w, and wx which can be thought of as general-

ized coordinates qm" However, the Morse and Feshbach perturbation func-

tions rm associated with these generalized coordinates are related to

the perturbation functions , ,and C in the same way that the general-

ized coordinates are related to the functions u, v, and w. That is, the

perturbation function associated with W~ would be C . The Taylor

series expansion would be

J(qq 2 q 3 ,q4 ,q5 ) J(ql,q 2,q3 ,q4 ,q5) + J(q*,q2 ,q31 q*,q5 )

+ Tr a]2 J(ql1 q2 ,q3 ,q4 ,q5 ) + higher order terms, (A.17)

and SJ would be the second term of the expansion with the a removed by

differentiation. Once those perturbation functions that are derivatives

of &, ri, and < are removed by integration by parts, the resulting form

is often called the Euler equations. Often overlooked in the develop-

ment to this point is that the integration by parts may have introduced

natural boundary conditions upon the system.

Another point of note is that the stationary condition 6J-O does

not necessarily guarantee a minimum. Often, it is obvious from the

problem at hand that the stationary point must be a minimum, such as for

the problem of the shortest distance between two points. However, this

is not always apparent. In such cases where doubt exists, the second

variational integral can be examined over the surface of stationarity in

much the same way the second derivative serves to determine whether a

point is a maximum, minimum, or inflection for a simple function. Such

techniques are extremely complex and beyond the scope of this work.
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The potential energy of the system arises from two sources. The

first is from the instantaneous elastic strain associated with the

stress distribution in the shell of the deformed motion. This strain

energy density is defined as

Uv +- L( 'oe + 'exc7x) , (A.18)

and the total strain energy of the shell would be given by

U - R3 fff UV r dp de dx (A.19)
V

The factor of 1/2 in the strain energy density arises from the elastic

relationship between stress and strain. Since the force on an elemental

volume varies linearly from zero at some initial state to a value pro-

portional to a at some final state, the average force moving through

some distance proportional to c is c/2, and therefore, the strain energy

is proportional to £e/2.

Another source of potential energy is due to the applied loading on

the shell. For this problem, this includes the pressure loading on the

shell given by pa (x,8,t) and the distributed driving forces denoted by

fd(x,e,t). The driving forces will be restricted to only radial forces,

and therefore, the potential energy associated with pa and fd will arise

due to the deformation w and be in the form of work, where

W - R3 ff (fd- Pa) w dO dx (A.20)
S

Forces which act in the direction of the displacement are considered to

do positive work.

From Equation (2.10) relating stress and strain, the strain

energy density can be written as

-' - ..-. .- -F.N. - ,.'. * * ~* ~ F V**1
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UE 2 22(1_2)rE +c + 2#ex e ( . (A. 21)
UV 2(1-/j 2) ee x 9+ 2 e]

If the strains are expressed in terms of the membrane strains and the

curvature terms, as given by Equations (2.8) and (2.9), then the strain

energy surface density Us can be determined by integrating over the

thickness, yielding

h/2 .

U R f (l+p) Uv dP
-h/2

- 2(-e {[2 + e 2 + 2p exxeee+ (-'-A) e2] (A.22)

2( 2- 1-2)

+ 2- + 2(e +p e )K + 2 + (A)(3K 2  K
Lxx eX x 2x KXx~ 90+ee 2 xE) ~

where terms of order greater than 0 have been neglected. The terms

proportional to 0 are due to bending of the shell, while the remaining

terms represent the strain energy due to the extension of the shell's

middle surface.

The membrane strains e and the nondimensional curvature terms K

are known functions of the middle-surface deformations u, v, and w and

their spatial derivatives. Hamilton's variational principle may again

be applied to yield

t2
3

SU- - (g + g rl + gw de dx dt (A.23)

t1 I

The term g u represents a variation with respect to u, which is given by

fe + /j e K + (! )[e + 0 Ke (A.24)

xx 99 xx X E~x px E
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or

gu - [ex + , e - 0 KmX - (1) - [ex + 0 KexI (A.25)

The integration by parts yields constant terms that are identically zero

since by definition & must be zero at the boundaries x=+- and 6-0,2n.

In a similar manner, the variation with respect to v is derived from

(-#)ex - 30 KX] n + [e* + p e - V1 K]fe (A.26)

or

2v '(xP [ex K -30KX) (e%~ + u exx 0/i KXX] (A.27)

Again, integration by parts yields constant terms that are zero.

The variation with respect to the radial deformation w is not

quite as simple as the others and is derived from

[e8 + Ai ex + 0 K I]C + 0 (!iu-)[Kx + 3 K IC,8
(e e~ +O ee 2 ex xE) , Ex

+ O[K e + p KX]<,*8 + O[Kxx + U K88 - exx - u eK ],x x  (A.28)

From the above,

2
gw - (e., + A exx +  Kee+] 0(-) r [KEx + 3 KX2 2

a - (K( + p K ] + -- (Kxx + /j K e - ' e I (A.29)
ae2  ax2  - xx eee

The constants associated with the integration by parts are identically

zero, zero due to continuity conditions at 9-0 and 2n, or require that

<,(X=±+,e,t) = 0 .

This condition is met for a free boundary condition.
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The work due to the applied forces and the acoustic pressure is

dependent only upon the radial deformation w and has a variation

t
2

SW -R~ j jj (f Pa C d9 dx dt .(A. 30)

The total variation is therefore

S3J fJJ LS de dx dt f J J (Ts - U5 + WS) de dx dt 0 (A.31)
ts t2

tlS t S
1 1

which for arbitrary , i, and C can only be satisfied if the coeffi-

cients of E, r), and C are each separately and identically zero. The

positive sign associated with the work of the external forces is due to

the general definition of potential energy for a conservative system.

This states that the difference in potential energy between a final and

initial state is equal to the negative of the work done by the forces on

the system when the system goes from the initial to the final state. a

Positive work is defined as increasing the kinetic energy of the system.

These equations are given by

g+ -K 0
u C2

p

g + _ V -0 (A.32) "

c
p

R 2  1 f

p

where the low frequency phase velocity of compressional waves in a plate

55%
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C2 E
E 2

and the normalized extensional rigidity of the shell

D EhD -( 2)

have been introduced. By introducing the definitions of gut gv and gw

given by Equations (A.25), (A.27), and (A.29) along with the definitions

of the dimensionless curvatures given by Equation (2.9) and the membrane

strain Equations (2.8), the differential equations of motion governing

the shell can be written in terms of the middle surface displacements as

Rl289 2 v• 2 eex

-3 WU (A.33a)

,xx 22 2 V A3b

)ux +  2 )(1+38)V + v0e3 + w - 1(-)W A-

,) - , ,u8) + v ( )w + 2w___p
+2 ,eex2 ,xx E 2 exx ,e2

Put~ ~ ~ x 03 ), e 3~~ + VE ( ~v ~x+(+0w+2weR2

+2, w + 9 ,3 ,,xxxx - - + (f (A.33c)

p 4-.

'A'4
9!

, *. ..
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